DAWN MEATS (EXPORTS) LTD.

Grannagh, Waterford IPPC Licence Reg No. P0179-01

Annual Environmental Report 2008

(Covering 2008 Monitoring Period)

March 2009

Contents

1.0 1.1	Introduction Licence Details	3 3
1.2	Summary Data Table	
1.3	Company Profile	3
2.0	Schedule of Objectives & Targets	6
2.1	Objectives & Targets 2008 - Progress Report	7
2.2	Objectives & Targets 2009	11
3.0	EMP – Summary Update	17
4.0	Emissions to Water Summary	24
	Details of Non-Compliances	27
5.0	Surface Water Monitoring Summary	27
	Details of Non-Compliances	
6.0	Groundwater Monitoring Summary	29
7.0	Waste Management	30
	Organic Waste Management	
8.0	Resource Consumption	36
8.1	Summary Energy Consumption	
8.2	Water Usage	
9.0	Complaints Summary	39
	EPA Audit 2008	39
10.0	Reported Incidents Summary	39

Appendix 3 Appendix 3 Appendix 4	AER Summary Data Table 2008 Annual Land Spreading Summary
Tables	
Table 1 Table 2.0 Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 2.5 Table 3.1 Table 3.2 Table 4.1 Table 4.2 Table 5.0 Table 6.0 Table 7.0 Table 8.0 Table 9.0 Table 10.0 Table 11.0 Table 12.0	Objectives and targets 2008 Progress Report Objective – Prevention of Pollution Objective – Waste Management Objective – Risk Control / Legislative Compliance Objective – Energy / Reduction in Carbon Footprint Objective – Conservation of Natural Resources Objective – Promotion of Environmental Awareness List of Projects in EMP Main Steps in NMP Process Effluent Emissions (ELV's) Summary Mass Emission Data EW-1 Surface Water Analytical Results 2008 Results of Ground Water Analysis 2008 V 2007 Summary Data of Waste Management Register Summary Waste Arisings (2008) Details of Main Waste Streams Organic Waste Arising 2008 Summary Energy Consumption Data Plant Water Consumption
Figures Figure 1	Dawn Meats (Exports) Ltd Management Structure Process Effluent Mass Emissions 2008 v 2007

Figure 1	Dawn Meats (Exports) Ltd Management Structure
Figure 2a	Process Effluent Mass Emissions 2008 v 2007
Figure 2b	Process Effluent mass Emissions 2008 v 2007
Figure 3	Comparison of Waste Arising 2008 v 2007
Figure 4	Comparison of Monthly Organic Waste Arising 2008 V 2007
Figure 5	Oil and Gas Consumption 2008 v 2007
Figure 6	Electricity Usage 2008 V 2007
Figure 7	Resource Usage Per Head 2008 V 2007

1.0 Introduction

This document is the ninth Annual Environmental Report (AER) covering environmental performance at the Dawn Meats (Exports) Ltd., Grannagh facility.

This report updates the information contained in the last AER to the end of December 2008 and summarises all data for the 2008 monitoring period and makes comparisons with year 2007 results.

This document updates the following sections of the monitoring period 2008 AFR:

- Section 2.0 Schedule of Objectives & Targets
- Section 3.0 Environmental Management Programme Status Report
- Section 4.0 Emissions to Water Summary
- Section 5.0 Surface Water Monitoring Summary
- Section 6.0 Groundwater Monitoring Summary
- Section 7.0 Waste Management Summary
- Section 8.0 Resource Consumption Summary
- Section 9.0 Complaints Summary
- Section 10.0 Reported Incidents Summary

As in the past, a brief summary of the main achievements of the Environmental Management Plan is included as Section 3.0.

1.1 Licence Details

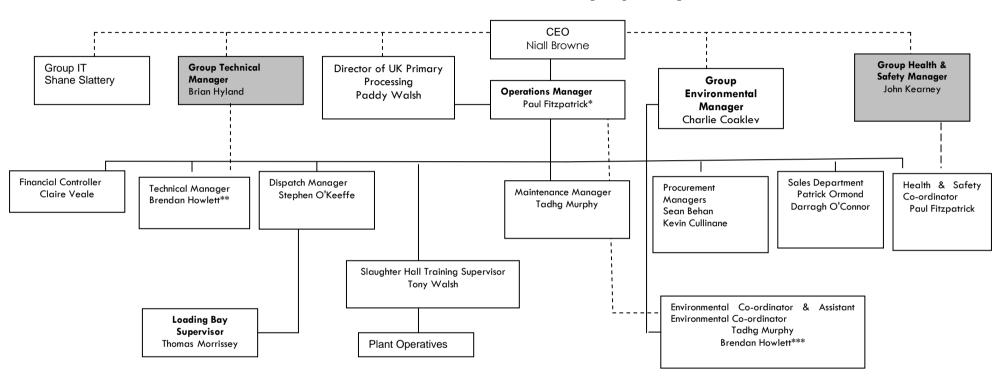
Licensee: Dawn Meats (Exports) Ltd.

Location of Activity: Grannagh, Waterford

IPPC Licence Register No.: P0179-01

1.2 Summary Data Table

Current IPPC Licence annual reporting requires the submission of summary monitoring, resource use, complaints and waste management information in the form of a spreadsheet, which is transmitted to the Agency electronically. A print out of this summary data spreadsheet is included as Attachment B to this AER. The spreadsheet has been submitted electronically to the EPA at http://aer.epa.ie/prtr


1.3 Company Profile

Dawn Meats (Exports) Ltd. are involved in the slaughtering of cattle for supply to Irish and export markets. The site is owned by the Dawn Group who have their headquarters located at the site. The company was established in 1980 and the Grannagh site was acquired in 1985. The slaughter plant has been continuously upgraded and modified to a modern and efficient plant with a capacity of approximately 90,000 head of cattle per annum. The plant size is 80,000 square feet and comprises of lairage, slaughter-hall and loading bay. Service utilities include the boilers and refrigeration units together with process water and a wastewater treatment plant which is shared with Queally Pig Slaughtering Ltd. (t/a Dawn Pork and Bacon IPPCL P0175-01). The primary

environmental emissions at the plant relate to the discharge of treated wastewater and the generation of organic waste as sludge, which is land spread. The environmental performance of the facility is regulated under an IPPC licence (Reg. No. 179-01). Environmental management at the site, including compliance with the IPPC licence, is achieved through a structured Environmental Management System (EMS).

An organogram illustrating the company management structure can be seen Below; figure 1.

Dawn Meats (Exports) Ltd - Figure 1

*** - Assistant Environmental Co-ordinator

2.0 Schedule of Objectives and Targets 2008 and 2009 Plans.

This section includes (2.1) progress achieved in meeting deadlines set for the 14 objectives and targets from the 2008 Schedule. Following the annual environmental management review by management, an amended format to the schedule of objectives and targets has been added in sub-section 2.2. The Environmental Management Programme and Objectives and Targets are outlined in section 3.

2.1 - Objectives and Targets 2008 Progress Report Table 1

Objective	Target	Deadline	Indicator	Project
Modification to process resulting in improved yield, elimination of wastes or use of alternative less hazardous materials.		Completed July 2008	Increased quantity of blood collected per head of animals slaughtered. Reduced organic loading to balance tank.	EMP 04
Reduce odour emissions.	Minimisation of sources of odour emissions. The balance tanks were covered.	Completed November 2008	Number of Complaints	EMP 03
Reduce energy / resource consumption.	Installed speed control invertors - To control the max speed of the line	Completed May 2008	Work completed	EMP 13
	Lagging of all heat exchangers in boiler house	Completed April 2008	Insulation completed	
	New timers installed on external lighting	Completed April 2008	Insulation completed	
	Compressed air - Install small air compressor for offal pack area and loading bay for non-kill days	Completed Sept 2008	New compressor and pipes installed	
	The boiler start times are staggered and are limited to production days only	Completed April 2008	Installation completed	
	NH3 Hot gas Recovery - Process water temperature raised from 11°C to 23°C	Completed May 2008	Unit Installed	

2.1 continued - Objectives & Targets 2008 Progress Report

Objective	Target	Deadline	Indicator	Project
Prevention of incidents with the potential for environmental consequences.	Bund Integrity Testing	Every Three Years	In compliance with IPPC Licence Reg. No 179 Conditions 9.3.6.	EMP 01 EMP 02
•	Pipeline testing	Every Three Years	9.3.7	
			9.3.3	
			9.3.2	
Improvements in process waste water quality			WWTP records, water records	EMP 03 EMP 04 EMP 17
	Installation of DAF unit	Completed August 2008	Installation completed	
Continue new licensee – performed noise surveys	Identify the primary sources of noise emissions; Group internal checks	Ongoing	EVR-14 H&S Surveys	EMP 13
	Independent external surveys.	Completed May 2008	External Surveys	
Ensure Specific Task managers receive relevant training on environmental and health and safety issues.	Continue relevant training programmes for relevant managers and operatives – Induction training for all new staff and refresher training every three years for existing staff	Completed January 2008	Training Records	EMP 18 EMP 19
Minimisation of solid waste	Further develop waste minimisation and recycling strategy and programme – Outlined plan in section 2.2	2009	Volume of solid waste as tonnes per head slaughtered.	EMP 05 EMP 06 EMP 07 EMP 08

2.1 continued - Objectives & Targets 2008 Progress Report

Objective	Target	Deadline	Indicator	Project
Minimise the potential for environmental impacts on water and groundwater.	New Landbanks - Continue process of identification and evaluation of suitable Land spread areas to ensure sustainability of land application	Annually	NMP Records	EMP 09
Internal Audits	Verify site environmental performance and compliance on a regular basis through scheduled, structured and objective internal audits.	Completed July 2008	Audit Reports	EMP 06
Paper Recycling	Recycled/shredding - Paper Evaluate office paper for recycled content	Completed Sept 2008	Supplier Specs	EMP 16

2.1 continued - Objectives & Targets 2008 Progress Report Comment:

The management status review of Objectives and Targets for 2008 came to the conclusion that significant progress was made across most of the objectives and further progress would be best achieved through extending the number of objectives to fifteen. Specific target and project amendments for 2009 follow in the next sections. As was the case last year, most of these objectives and targets have been proceduralised and so their status will remain ongoing.

2.2 Objectives & Targets – 2009

Objective - Prevention of Pollution – Table 2.0

Projects	<u>Target</u>	<u>Summary</u>	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
EMP 01 Pipeline Testing	Underground pipelines	2006 Underground pipelines were tested	Every 3 years Due July 2009	Maintenance Manager	Reports	Ongoing (tested 2006, re test due 2009)
EMP 02 Bund Integrity Testing	Tallow, Diesel, Generator and central heating Bund	2006 Bund testing completed	Every 3 years Due July 2009	Maintenance Manager	Reports	Ongoing (tested 2006, re test due 2009)
EMP 03 Hydraulic Loading Reduction	Reduction in hydraulic loading on WWTP	Ongoing monitoring of water usage throughout plant and comparison at group level to industry usage levels	Ongoing	All manager and supervisors	WWTP records, water records	Ongoing
EMP 04 Biological Loading Reduction	Reduction in biological loading on WWTP	Investigate methods of removing additional solid wastes material from influent at preliminary treatment stage.	March 2009	Group Environmental Manager	Plans, Records	Ongoing

2.2 continued - Objectives & Targets – 2009

Objective - Waste Management (Reduction, recycling, reuse, & safe disposal) – Table 2.1

<u>Projects</u>	<u>Target</u>	<u>Summary</u>	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
EMP 05	Segregation of	Recycling of waste cardboard	July 2009	Environmental	Records	Ongoing
Cardboard and	cardboard	generated		Manager		
Plastic Recycling	materials for baling					
	and recycling	Recycling Bins/shredding for more efficient segregation and collection	July 2009	Enviro Manager	Bins on site	Ongoing
EMP 06	Internal audit of all	Ongoing monitoring and	Ongoing	Department	Monthly Area	Ongoing
Waste	processing and	inspection of wastes arising		Managers and	Inspections –	
Management	utilities to ensure	and internal management		Supervisors	EVR-14	
	appropriate waste	practices				
	management			_		
EMP 07	Reduce the volume	Ongoing review of possible	September	Department	Records	Ongoing
Landfill	of waste going to	alternative destination for	2009	Managers and		
Management	landfill	waste reuse / recycling.		Supervisors		
EMP 08	Organic Waste	Investigate on and off site	December 2009	Group	Group tracking and	Ongoing
Treatment of		treatment for organic waste		Environmental	investigation of	
Organic Waste		streams.		Manager	options to stabilise	
					waste streams	
EMP 09	New Landbanks	Continue process of	Annually	Environmental	Landbank hectares	New Landbanks
Develop New		identification and evaluation of		Manager	approved by EPA	added January '08
Landbanks		suitable Land spread areas to				
		ensure sustainability of land				
		application				

2.2 continued - Objectives & Targets - 2009

Objective - Risk Control / Legislative Compliance – compliance with relevant environmental legislation – Table 2.2

<u>Projects</u>	Target	Summary	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
EMP 10 Legislation Review	Review of current and proposed legislation and an assessment of its relevance to site activity.	Group Environmental manager prepares a legislation list and reviews impact of relevant legislation.	Quarterly	Group Environmental Manager	Legislative File	Ongoing
EMP 11 Waste Contractor Review	Waste Contractors and Transport Companies	Ongoing review of waste contractors licenses and register of licenses held on file.	Annually	Environmental Manager	Records	Ongoing
EMP 12 Supplier Awareness	Suppliers	Issue copy of Dawn Meats Environmental policy to all suppliers	April 2009	Environmental Manager	Correspondence File	Ongoing

2.2 continued - Objectives & Targets – 2009

Objective – Energy / reduction in Carbon Footprint – Table 2.3

<u>Projects</u>	<u>Target</u>	<u>Summary</u>	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
EMP 13 Reduce Energy Usage	Lighting in all Chills, marshalling area and loading bay.	Chills and marshalling Area, Take every second Light out of operation.	Feb 2009	T. Murphy	No of lights in operation	Ongoing
	Steriliser operation	Loading bay, disconnect lights under twin rail.	Feb 2009	T. Murphy	Lights	Ongoing
		Evaluate current steriliser operations.	Feb 2009	T. Murphy, B. Hyland. C. Coakley		Ongoing
	Air Leaks	Maintenance operative to walk air line to identify and repair any air leaks.	Feb 2009	T. Murphy	Air Leaks Eliminated	Ongoing
	External lights	Review all external lights with a view to sensor suitability.	Feb 2009	P. Fitzpatrick, T. Murphy	No Of external lights on sensors	Ongoing
	Corridor lights and common areas	Install sensors in all corridors and other suitable areas.	Feb 2009	T. Murphy	Sensors in place	Ongoing
	Improve Energy Efficiency	Track energy consumption. Monitor and evaluate Gas, oil and electricity usages	Weekly	T. Murphy	KPI's Records, Weekly Energy Usage	Ongoing
	Compressed air	Install shut off valves to individual pieces of kit.	April 2009	T. Murphy	Valves in place	ongoing
	Flash gas Chill	Review chilling of flash gas to reduce load on compressors	February 2009	F. Dwane, C. Coakley	Review	Ongoing
	Tail washers	Remover air from tail washers and replace with counter balance system.	April 2009	T. Murphy	Counter balance in situ	Ongoing

2.2 continued - Objectives & Targets – 2009

Objective - Conservation of natural resources - Table 2.4

<u>Projects</u>	<u>Target</u>	<u>Summary</u>	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
Reduce Water Consumption	Reduce Water Consumption	Track water usage throughout the plant. Monitor water usage in each department	Weekly	Department managers and supervisors	Records, Monthly Meetings	Ongoing
	Water Leaks	All leaking water identified checked and repaired	March 2009	Maintenance Manager	Water Leaks Eliminated	Ongoing

2.2 continued - Objectives & Targets - 2009

Objective - Promotion of Environmental Awareness – Table 2.5

<u>Projects</u>	<u>Target</u>	Summary	<u>Deadline</u>	Responsibility	<u>Indicators</u>	<u>Status</u>
EMP 20 Environmental Awareness	Awareness Signs	Signs to be displayed in various areas reminding staff to close all doors and turn off all lights	February 2009	Environmental Manager	Signs on display	Ongoing

3.0 Environmental Management Programme and objectives and targets – Summary

Dawn Meats (Exports) Ltd., Environmental Management Programme and Objectives and Targets are committed to ensuring a significant effort and more attention is paid to improvements in efficiency at the plant, in terms of energy consumption, water use and waste generation. The focus of the 2009 EMP will be largely in these areas, using the EMP as a management tool for planning and tracking the implementation of projects on site which lead to the overall achievement of the Dawn Group Environmental Policy, while ensuring compliance with the IPPC license remains a high priority.

A number of long-term on-going programmes initiated at the site will continue on an on-going basis to ensure compliance with the conditions of the IPPC licence and the site environmental management system.

The progress and plans for the future in meeting these objectives and targets are summarised below.

Table 3.1 Lists of Projects in EMP

<u>Project</u>	<u>Title</u>	
EMP 01	Pipeline Testing	
EMP 02	Bund Integrity Testing	
EMP 03	Hydraulic Loading Reduction	
EMP 04	Biological Loading Reduction	
EMP 05	Cardboard and Plastic Recycling	
EMP 06	Waste Management	
EMP 07	Landfill Management	
EMP 08	Treatment of organic waste	
EMP 09	Develop new Landbanks	
EMP 10	Legislation Review	
EMP 11	Waste Contractor Review	
EMP 12	Supplier Awareness	
EMP 13	Reduce Energy Usage	
EMP 17	Reduce Water Consumption	
EMP 20	Environmental Awareness	

EMP 01: Pipeline Testing and

Project Summary

A maintenance operative of the pipeline distribution systems carries out monthly-recorded visual inspections (EVR-12).

The inspection comprises a visual and physical (hand) inspection along the length of the pipeline system. Particular attention is paid to flanges, joints, seals and glands and through wall runs. The condition of pipe is noted with regard to corrosion and wear. The condition of any lagging is noted.

In the event that any leak is detected or significant corrosion/wear observed, the Maintenance Manager is notified. It is the responsibility of the Maintenance Manager to initiate and sign off on Corrective Action and in circumstances of significant leak or risk, notify the Technical Manager.

As a result of inspections being proceduralised, the potential for leaks going unnoticed has decreased significantly.

An external consultant is due to carry out a Pipeline inspection in July 2009 contracted by the Dawn Group and a report will be completed and sent to the EPA.

Status:

This project is **ongoing**.

EMP 02: Bund Integrity Testing

Project Summary

Underground Tank and Bunding:

An external consultant is due to carry out a Bund integrity assessment on the tallow, diesel, central heating bunds and an underground tank test in July 2009 contracted by the Dawn Group and a report will be completed and sent to the EPA.

Bunding reports were completed and were sent to the EPA in August 2006.

Status:

This project is **ongoing**.

EMP 03: Hydraulic Loading Reduction *Project Summary*

Hydraulic loading rates define the rate wastewater enters the WWTP. It has been decided that no boilers or pumps will be turned on or activated during a non kill day unless requested by a senior manager. We have purchased a portable hot wash washer to facilitate any hot washing that may occur during these days.

Ongoing monitoring and recent records have shown a reduction in natural gas consumption of 15%. Weekly records are being compiled by maintenance manager and records are maintained and continually reviewed as KPI's.

Status

Ongoing

EMP 04: Biological Loading Reduction

Project Summary

A further review of our sticking area, blood collection, has been carried out by the blood company APC blood technologies and by Dawn Meats (Exports) Ltd. Some minor changes have been made with the addition of stop bars and sprays bars and splash guards have led to the maximum harvesting of 20 litres per head and our weekly calculations encourages this.

A new DAF unit has been sourced from within the Dawn Group and is to be installed in our green room waste area to help with the screening and removal of solid waste from our influent. The DAF unit is on site and installation is being organised between production, maintenance and environmental department.

Status

March 2009

EMP 05: Cardboard and Plastic Recycling

Project Summary

Maximising of practical recycling takes place at Dawn Meats (Exports) Ltd. There is a separate compactor for cardboard. Dawn Meats (Exports) Ltd bale all plastic separate and there is another compactor for general waste. All three channels of waste are removed by Veolia.

Contract shredding takes place throughout the year for office paper recycling for both Dawn Meats Group and Dawn Meats (Exports) Ltd. Ongoing monitoring of recycled cardboard and plastic is discussed quarterly at production meetings.

Status

July 2009

EMP 06: Waste Management

Project Summary

In 2008 Dawn Meats (Exports) Ltd did not increase the production of waste mainly due to the closure of the boning hall in December 2007. We have had discussions with Veolia waste services and with present national trends of cardboard, plastic recycling we are continuing with our present waste plan. Group environmental audits are carried out according to a scheduled plan and this is a useful tool to gauge the performance of Dawn Meats (Exports) Ltd waste management plan. There were a few non-compliances, in relation to the EMS, highlighted and these have since been addressed in a corrective action plan.

Status

Ongoing

EMP 07: Landfill Management

Project Summary

Identification and evaluation of the economic and technical feasibility of waste minimisation - reduction measures has been carried out. On the basis of feasible options being identified, a schedule for the implementation of these options was developed. The feasible options were as follows:

We are currently trying to reduce the volume of waste going to landfill. Currently glass, tin cans, plastic bottles and cardboard are being separated in the site canteen and sent for recycling. All office personnel have been instructed to reduce their paper usage and think before they print. All department heads and supervisors have received instructions and training on this procedure; to think before waste is binned.

Status

September 2009

EMP 08: Treatment of Organic Waste

Project Summary

The investigation of double pressing of our sludge produced at the Waste Water Treatment plant will lead to a reduction in volume and tonnage in total but will not lead to a reduction in sludge spread on NMP land.

Another proposal is the use of a centrifuge instead of a double press. Both of these projects have substantial capital layout and are only at the very early stages of discussion.

Status

December 2009

EMP 09: Develop New Land Banks

Project Summary

It has been decided at management level that any Landbank being added to the approved Landbank will only be accepted for a NMP once a year. Dawn Meats (Exports) Ltd ask the following questions; does the farmer own the land or have it leased for at least five years, its distance from the factory, the road route for trucks and large vehicles and that the land is not affiliated with other interests i.e. REPS or owned by another company. This process then allows Dawn Meats (Exports) Ltd to increase if necessary the land bank. The environmental consultants deal with the NMP's and submissions are made in one lot as requested by the EPA.

The nutrient Management plan is submitted to the Agency on an Annual basis. (Please note, a total review in line with the Nitrates Directive and S.I. No. 378 of 2006 have resulted in a complete overhaul of existing NMP's.

Table 3.2 - Main Steps in Nutrient Management Plan

Step 1	Sampling - soils to calculate soil P levels.			
Step 2	Testing of sludge for nutrient levels			
Step 3	Application rate per sample location ~ 2 hectares			
Step 4	Mapping of the land bank			
Step 5	Communications of the plan to the relevant personal			
Step 6	Implementation of the plan			
Step 7	Co-ordinating between the plant, farmers and			
	contractors.			
Step 8	Records, of all documentation			
Step 9	Establish a Register of Organic Waste for Land spread			

Status

Ongoing - Annually

EMP 10: Legislation Review

Project Summary

Ongoing review of current and proposed legislation and assessment of relevance at the site. The Group Environmental Manager prepares legislation list and review of impact of legislation. Ongoing review of waste contractors licences and register of waste contractors held on file. A Decommissioning Plan was established to be implemented in the event of site closure.

Status

Ongoing - Quarterly

EMP 11: Waste Contractor Review

Project Summary

There is an ongoing review of waste contractors licences and register of waste contractors. This is kept on file in the Technical Department.

Status:

Ongoing - Annually

EMP 12: Supplier Awareness

Project Summary

As part of the ongoing process of increasing environmental awareness all suppliers to Dawn Meats (Exports) Ltd will be issued a copy of Dawn Meats (Exports) Ltd environmental policy. This policy is signed off by the CEO of Dawn Meats Group.

Status:

April 2009

EMP 13: Reduce Energy Usage

Project Summary Energy reduction in carbon footprint

- Lighting in all Chills, marshalling area and loading bay. Chills and marshalling
- Area, Take every second Light out of operation.
- Steriliser operation Loading bay, disconnect lights under twin rail. Evaluate current steriliser operations.
- Air Leaks Maintenance operative to walk air line to identify and repair any air leaks.
- External lights Review all external lights with a view to sensor suitability.
- Corridor lights and common areas Install sensors in all corridors and other suitable areas.
- Improve Energy Efficiency Track energy consumption. Monitor and evaluate Gas, oil and electricity usages
- Compressed air Install shut off valves to individual pieces of kit.
- Flash gas Chill Review chilling of flash gas to reduce load on compressors
- Tail washers Remover air from tail washers and replace with counter balance system.

Status:

February to April 2009

EMP 17: Reduce Water Consumption

Project Summary

Water usage is monitored weekly and complied into weekly utility figures. Strategic water audits are carried out on our water softening and extra metering has been installed. Monitoring is continuing on an ongoing basis. This data was tracked over a six-month period in order to identify variations in the correlation between kill statistics and water use. The company will continue trending water use over time.

Status:

Ongoing - Weekly

All water leaks to be identified, checked and repaired.

Status:

March 2009

EMP 20: Legislation Awareness

Project Summary

All Dawn Meats (Exports) Ltd employees have received environmental induction training. As part of the ongoing process of increasing environmental awareness signs are to be placed on walls and doors, by maintenance, around the site which will serve to create awareness that all operatives, supervisors and Managers must close doors and to turn off lights as required. In doing so there are benefits both to the environment; a reduction in carbon output and a reduction in energy costs for Dawn Meats (Exports) Ltd.

Status:

February 2009

4.0 Emissions to Water Summary

Environmental monitoring data for the monitoring period January to December 2008 are summarised in the following sections. Data from the 2008 monitoring period, in accordance with EPA notification M179/gc07pg.doc dated 08/04/02 is in Appendix 4.

The raw effluent (comprising screened lairage slurry excess water, slaughter and other process waters and internal cleaning waters) flows by gravity to the Waste Water Treatment Plant at Queally Pig Slaughtering Ltd. (t/a Dawn Pork and Bacon IPPCL P0175-01). Here it is pumped through the initial rotary screen to the rest of the WWTP comprising of an activated sludge system. Treated wastewater is discharged directly into the River Suir from a discharge pipe.

Emissions to water are regulated under Condition 6.2 and Schedule 1 of the IPPCL as follows:

Table 4.1 Process Effluent Emissions – (ELV's)

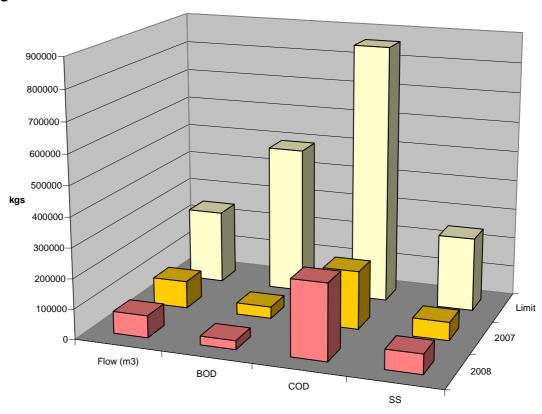

Emission Point Reference No.:	EW-1 (Pump Sump)		
Name of Receiving Waters:	Dawn Pork & Bacon Waste Water Treatment Plant		
Location:	Boundary of site as per figure 9.6 of IPPCL application.		
Volume to be emitted: Maximum in any one day: Maximum rate per hour:	675 m ³ 42 m ³		
Parameter	Emission Limit Value (Concentration)	Daily Mass Emission Limit Value (kg)	
PH	6-8.5	(6-8.5)	
Temperature	42°C	(42°C)	
BOD (mg/l)	4000	1350	
COD (mg/l)	7000	2362.5	
Suspended Solids (mg/l)	2000	675	
Nitrates (as N) (mg/l)	150	67.5	
Total Ammonia (as N) mg/l	150	67.5	
Total Phosphorus (as P) (mg/l)	200	47.25	
Detergents (mg/l)	20	13.5	
Oils, Fats and Grease (mg/l)	150	101.25	

Table 4.2 Summary Mass Emission Data EW-1

Parameter	Mass Emission 2007 (kgs)	Mass Emission 2008 (kgs)	% Change 2007 v 2008	Permitted Mass Emission (kgs)
Flow (m ³)	91,362.8	73,250.4	-19.8%	246,375 m ³
BOD	38,729.5	29,371.8	-24.1%	492,750
COD	193,546.5	251,657.1	+30.0%	862,313
Suspended Solids	61,086.4	65,794.3	+7.7%	246,375
Nitrates (as N)	1,291.2	1,319.5	+2.1%	24,638
Total Ammonia (as N)	2,622.3	1,185.2	-54.8%	24,638
Total Phosphorus (as P)	1,702.8	1,011.4	-40.6%	17,246
Detergents	31.3	100.2	+220%	4,928
Oils, Fats & Greases	339.8	318.5	-6.2%	36,956

^{*} Permitted mass emissions based on discharges at ELV and maximum daily flow

Figure 2a Process effluent mass emissions 2008 v 2007

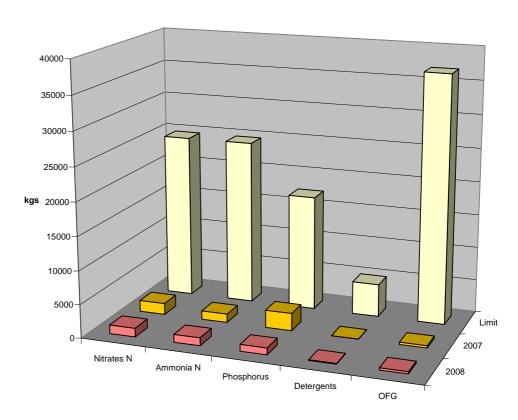


Figure 2b Process effluent mass emissions 2008 v 2007

Analysis:

In mass balance terms, as before, every parameter was below limits.

Using the figures in table 3, the following points will help in the analysis:

The Kill figures decreased in 2008, compared to 2007, by 14.5%, which highlighted a decrease in comparison to previous annual kill totals. This coupled with the closure of the boning hall resulted in a decreased flow rate of 19.8% for 2008 compared to 2007 figures.

The major action, which ensured that the process effluent conformances were adhered to, was the highlighting of the results in mass format. All parameters showed marked improvements with reductions in the following: **BOD** mass was reduced by 24.1% and the **Ammonia** by 54.8%.

Actions taken to minimise leakage of **detergents**, (from boot-wash suction pumps and cleaning) referred to in the previous AER, wasn't as successful this year, with an increase of 220%. As will be seen from Table 3, detergent mass emissions are still a small fraction of the permitted levels, evidence of our effort to minimise shocks to the WWTP. There were four increases in 2008, which included COD by 30%, Suspended Solids by 8%, Nitrates by 2% and detergents by 220%.

4.1 Details of Non-Compliances

There were no non-compliant samples (by parameter, not day) recorded during the 2008 monitoring period, of 1194 samples taken, giving an overall percentage compliance rate of 100% (versus 2007's 99.5% compliance).

The raw data and non-compliance summaries have been sent to the EPA under a different heading. It is noted that no individual samples exceeded emission limit values and the overall mass emission limits were not breached in 2008 (See Table 3).

The improvements can be seen across all test parameters now that the results are expressed in mass (concentration x flow) terms. This was agreed with the EPA during the 2007 site audit, with the result that during 2007 non-compliant results were virtually eliminated once flows were taken into account.

5.0 Surface Water Monitoring Summary

Surface water run off collected from a (a very limited) 'clean' yard and roof areas is discharged by gravity to a manhole (EW-3) and then flows into Dawn Pork and Bacon's surface water drainage system, which runs to the east of the site. The surface water finally discharges to the River Suir.

The layout of the site and the nature of the business demand that much of the roof and yard areas are fed to foul sewers (and thereafter to the effluent plant), which has greatly reduced the expected volume of surface water at EW-3. As outlined above Dawn Meats has made some progress in diverting a significant amount of roof-collected rainwater to the surface water system and further developments are continuing.

Analysis is carried out on a continuous, daily, monthly and quarterly basis for pH, COD, Total Ammonia, Suspended Solids, Oils, Fats and Greases and Conductivity, in accordance with Condition 9.1.4 and Schedule 3(i) off the site IPPCL. The results of monthly and quarterly surface water analysis are tabulated on Table 5.

Table 5.0 Surface water analytical results 2008

	Parameter						
Month	COD (mg/l)	NH3_N (mg/l)	OFG (mg/l)	SS (mg/l)			
January	18						
February	11						
March	13	0.89	<1	0			
April	14		<1				
Мау	15						
June	14		<1				
July	35						
August	14						
September	23	0.41	<1	0			
October	20						
November	18						
December	20	0.26	<1	0			
2008 Average	17.91	0.52	1	0			

The results of analysis of surface water samples above are broadly similar to those reported for the previous monitoring period and are generally within expected levels for surface water run-off.

5.1 Details of Non-compliance

There are no emission limit values for surface water parameters set out in the IPPC licence.

Dawn Meats has, however, established warning and action levels for COD. The warning level for COD is 50mg/l and the action level is 100mg/l. As can be seen above, neither limit was exceeded during the 2008 monitoring period.

Accordingly, surface water discharges to the River Suir were within expected ranges during the reporting periods and were fully compliant.

6.0 Groundwater Monitoring Summary

There is a production well that meets the plant water demand, located within the Dawn Group Grannagh site perimeter.

This groundwater is monitored on an annual basis for the EU Drinking Water Directive parameters (see Appendix 1 for results). The results of analysis of some major environmental parameters are tabulated on Table 7.

Table 6.0 Results of groundwater analysis 2008 v 2007

	Nitrate (mg/l)	Phosphorus (mg/l)	Total Ammonia (mg/l)
EU MAC (80/778/EEC)	50	5.00	0.30
2007	8.12	<0.01	<0.02
2008	7.79	<0.10	<0.21

Nitrates showed a slight decrease of 0.33mg/l between 2007 and 2008. Phosphorus showed an increase between 2007 and 2008 and Ammonium showed an increase between 2007 and 2008. All parameter results remained at a low concentration.

7.0 Waste Management

Management of solid non-hazardous and hazardous wastes are recorded in accordance with Condition 7 of the IPPC Licence.

Summary data from the waste management register are tabulated on Table 7. Totalled annual data is set out below:

Table 7.0 Summary Data of Waste Management Register

Waste Type	Reporting Period			
rusic type	2007	2008		
Total quantity of waste produced in calendar year (Tonnes)	13053.95	9902.07		
total quantity of waste disposed of on- site	0	0		
total quantity of waste disposed of off- site	37.6	23.96		
total quantity of waste recovered on- site	0	0		
total quantity of waste recovered offsite	13016.35	9878.11		
Non-Hazardous	2007	2008		
Quantity of non-hazardous waste produced in calendar year (T)	9477.43	7118.97		
quantity of non-hazardous waste disposed of on-site	0	0		
quantity of non-hazardous waste disposed of off-site	37.6	23.96		
quantity of non-hazardous waste recovered on-site	0	0		
quantity of non-hazardous waste recovered off-site	9439.83	7142.94		
Hazardous	2007	2008		
Quantity of hazardous waste produced in calendar year (Tonnes)	3576.52	2783.099		
quantity of hazardous waste disposed of on-site	0	0		
quantity of hazardous waste disposed of off-site	0	0		
quantity of hazardous waste recovered on-site	0	0		
quantity of hazardous waste recovered off-site	3576.52	2783.099		

(The above data includes organic waste arisings at the site.)

Organic waste (see below) management is carried out in accordance with a Nutrient Management Plan (copy of which has been submitted to the EPA under separate cover 21/12/07, 08/05/08 and 17/09/08 for the 2008 land-spreading season).

The information tabulated on Table 8 below have been extracted from the AER electronic report format, a copy of which has been transmitted to the Agency via internet in March 2009.

The following materials are considered to be by-products of the slaughtering process, and accordingly have not been included in the waste tables:

- Pet Food (lungs, liver, trachea, tripe, sweetbread, greaves and heart)
- o Hides
- o Tallow

A comparison of summary information on non-hazardous and hazardous wastes between 2008 and 2007 is presented graphically on Figure 3 below.

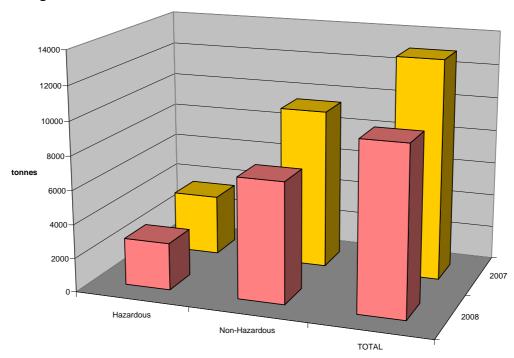


Figure 3 Comparison of Waste Arising 2008 v 2007

Table 8.0 Summary Waste Arisings (2008)

Table 0.0	able 8.0 Summary waste Arisings (2008)					
EWC Code	Hazardous (Yes/No)	Description of Waste	_		Location of Disposal/ Recovery	Name of Waste Disposal Recovery Contractor
02 02 02	Yes	SRM	2783.099		(b)Dunlavin, Co. Wicklow	Dublin Products Ltd, Dunlavin, Co. Wicklow
13 08 02	Yes	Waste Oil	0.0	R13	(b)Portlaoise, Co. Laois	Enva Ireland Ltd, Portlaoise, Co. Laois
20 01 21	Yes	Fluorescent Tubes	0.0	R4	(b) Athy, Co Kildare	Irish Lamp Recycling Co. Ltd, Athy, Co Kildare.
02 02 02	No	Offals	2089.632	R11	(b) Ballyhaunis, Co Mayo	Western Proteins Ltd, Ballyhaunis, Co Mayo
02 02 02	No	Bone	0	R11	(b) Ballyhaunis, Co Mayo	Western Proteins Ltd, Ballyhaunis, Co Mayo
02 02 99	No	Blood	799.144	R11	(b) Silverwood, Craigavon, Armagh	APC Technology, Silverwood, Craigavon, Co. Armagh
02 02 04	No	Organic Waste	4198.04	R10	(b) Local Area	Approved Farmers as per submitted Nutrient Management Plan
02 02 99	No	General Refuse	23.96	D1	(b) 6 Cross Roads Business Park, Waterford	Veolia Environmental Services, Six Cross Roads Business Park, Waterford. (Disposal at Powerstown, Portlaoise, Youghal, Rossmore Landfills - In Counties Carlow, Laois and Cork respectively
02 02 99	No	Drum& other plastics	0	R3	(c) Rossendale, Lancashire, UK	Holchem Ltd, Rossendale, Lancashire, UK
15 01 01	No	Corrugated Card	8.2	R3	(b) 6 Cross Roads Business Park, Waterford	Veolia Environmental Services, Six Cross Roads Business Park, Waterford. (Recycling at Veolia Environment Services, Dock Road, Limerick)

IPPC Licence Reg. No. P0179-01 Page 32

Analysis: To aid analysis, the main waste streams are detailed below.

Table 9.0 - Details of Main Waste Streams

	2008 Tonnes	2007 Tonnes	_	% Change
Waste Type			Tonnes	
Specified Risk Material	2783.09	3576.52	- 793.43	- 22.1%
Waste Offals	2089.63	2801.64	- 712.01	-
Bones (non-SRM)	0	1046.41	- 1046.41	-
Sub total Offals & Bones	2089.63	3848.05	1758.42	- 45.6%
Blood	799.14	1002.28	- 203.14	- 20.2%
Organic Waste	4198.04	4576.56	- 378.52	- 8.2%

Decreases in SRM/Category 1: This year there was a decrease in the amount of Specified Risk Material sent off site compared to the last number of years. The main effect of this was a reduction in DAF-condemned carcases, which can lead to reduction in <u>batch</u> disposals of product, blood and pet food to SRM. Also there was a reduction in the kill numbers in 2008.

Progressive improvements in the WWTP rotating plate screen has increased the solid waste yield, through diversions from the process effluent.

The decrease in Cat 3 waste was due to a reduction in the annual kill numbers. Finding product markets for some hitherto waste products can be difficult due to market conditions.

Recycling: The cardboard recycling yields increased by 13.8% during the period, compared to last year this is due to a more economical use of cardboard. Meanwhile, customer specifications shifting towards reusable plastic trays for packaging have reduced cardboard usage.

Conclusion: There was no bone production in 2008 with the closure of the boning hall.

Market conditions dictate the levels of Cat 3 waste as seen above with the experience in offal.

However, the important improvement is the reduction in loading to the WWTP (and thereby to the Suir River).

7.1 Organic Waste Management

Organic waste at the facility arises from the treatment of process wastewater and from the dewatering of the paunch contents of slaughtered animals.

Liquid effluents from the processing and washing operations drain to an on-site wastewater treatment plant. The plant is a biological treatment (activated sludge) system, under the IPPC licence of Dawn Pork & Bacon Ltd.

Paunch contents are dewatered on a press and the liquid arising from the pressing along with cattle lairage cleaning and yard cleaning is diverted to the treatment plant.

Organic waste is stored at an approved off-site storage facility and land spread in accordance with a Nutrient Management Plan (NMP). (See appendix 3)

The quantity of organic waste arisings for the calendar year 2008 is tabulated on Table 10.0.

The total quantity of organic waste generated in the 2008 reporting period (4198 tonnes) was down 8.2% from 2007 (4576 tonnes).

Table 10.0 Organic Waste Arising 2008

Month	WWTP Sludge(kgs)	DM Paunch (kgs)	DM Lairage (kgs)
January	0	85060	0
February	0	77700	0
March	389000	70400	0
April	335800	94880	0
May	0	85560	0
June	566180	68600	0
July	145000	33900	804500
August	1080480	71840	0
September	0	78100	0
October	0	83560	0
November	0	60980	0
December	0	66500	0
2008	2516460	877080	804500
	Total 4198040		

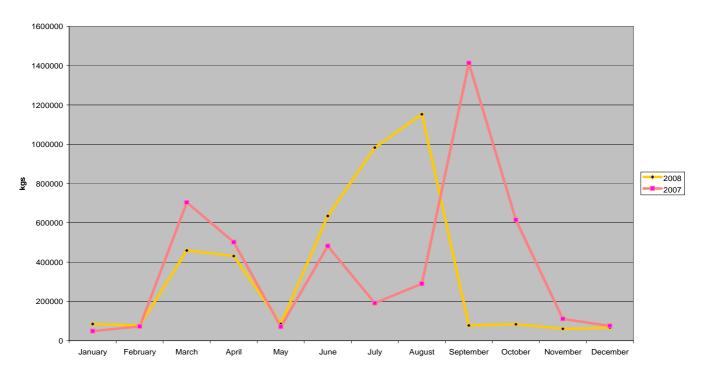


Figure 4 Comparison of Monthly Organic Waste Arisings 2008 v 2007

Analysis:

The decrease in organic waste removed from site for land spreading is due to a number of factors:

- Kill Pattern The decrease in beef kill numbers directly affects the paunch yields, but it is often the pattern of kill, which has the greatest effect on lairage yields. A series of relatively low numbers slaughtered per day as typified the kill pattern for much of 2008 allows for holding cattle for relatively short periods in the lairage and a resultant drop in slurry yield per head. Fewer kill days with larger kills per day, as was resumed in 2008, requires on average a longer penning time and yields a greater volume of slurry per head.
- WWTP sludge is generally fairly static, as both Dawn Meats and Dawn Pork and Bacon feed the WWTP. Timing of sludge disposal has some effect here also.

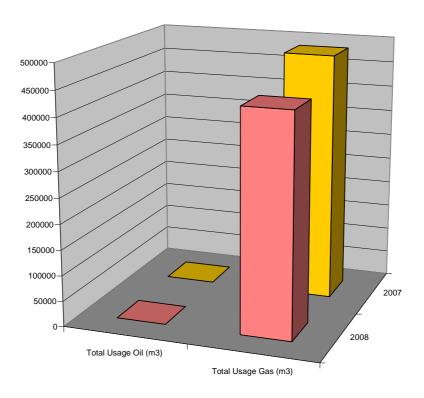
8.0 Resource Consumption

Data relating to energy consumption (electricity, light fuel oil and natural gas) and water for the 2008 reporting period are summarised in the following sections. Data for 2007 is provided for comparative purposes.

Data are presented as annual totals and per head of cattle slaughtered.

8.1 Summary Energy Consumption

Table 11.0 Summary Energy Consumption Data


Year	Oil Consun	nption (I)		tricity tion (kWH)	Natura Consumpti	
	Total Usage	L/head	Total Usage	kWH/head	Total Usage	kWH/head
2008	32,252	0.72	3,108,000	70.03	4,781,605	107.75
2007	35,286	0.68	3,886,000	74.93	5,366,975	103.49

Analysis:

The company has studied the experience with **natural gas** and proposed an initial target usage per head of 8 litres, i.e. based on 2007's usage rate. There was a 4.1% increase on gas usage per head for 2008 compared to 2007.

Total **electricity consumption** decreased in 2008 by 20% and electricity usage per head decreased from 74.93 to 70.03 kilowatt-hours per head.

Conclusion: Increased mechanisation of the line, extension of chilled areas and other product safety enhancements such as maintaining sterilisation temperature equipment due to regulatory requirements have also increased relative electricity demand. The fact that refrigeration demand at the plant remains relatively constant under changing production levels has much to do with per head disimprovement. The WWTP is also supplied with power from the Dawn Meats site and would have had a constant demand also. Natural gas consumption matched the increase in the total kill number along with the staggered start times for production and close management of the boilers increases the constant demand for electricity for much of the factory and the increased mechanisation of production militates against efficiency. For November 2008 to March 2009 full availability of maximum demand services, full targets were being met and maximum bonus were forecast for five days a week between 4.30pm and 7.30pm i.e. generating electricity in a controlled manner.

■ 2008 ■ 2007

Figure 5 Oil & Gas consumption 2008 v 2007

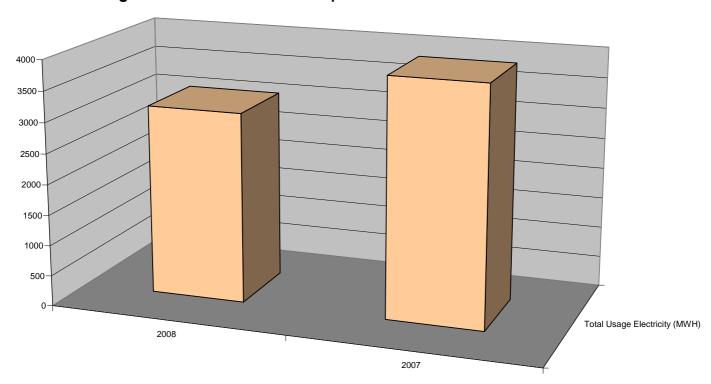


Figure 6 Electricity usage 2008 v 2007

8.2 Water Usage

Water consumption for the site for the 2008 reporting period is summarised on Table 12.0. Plant water demand is met from an on-site well and municipal water supply.

Data for the same period in 2007 is provided for comparison purposes. Plant water usage is typically directly related to production levels, although developing DAF hygiene regulations are tending to increase water usage per head in recent years.

Table 12.0 Plant water consumption

Year	Water Consu	umption (m³)
	Total Usage	m³/head
2008	98604 (-14%)	2.22 (+0.4%)
2007	114759	2.21

Analysis: As was forecast in last year's report, the decrease in the numbers killed, saw a dis-improvement in water usage per head slaughtered. There was 0.4% more m³ of water used per head in 2008 compared to 2007. The situation is being continuously monitored.

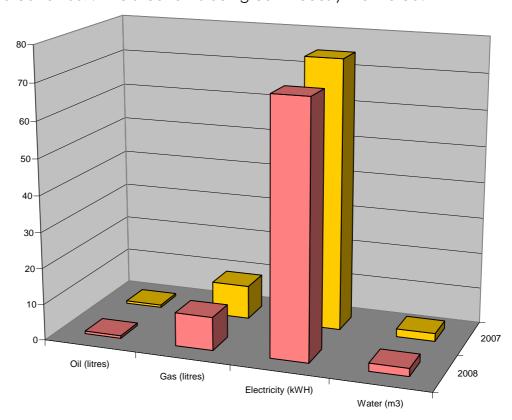


Figure 7 Resource usage per head 2008 v 2007

9.0 Complaints Summary

There was no complaints received by Dawn Meats (Exports) Ltd during the period of 2008.

9.1 EPA Audits 2008

The EPA performed no unannounced audits in 2008.

10.0 Reported Incidents Summary

There were no environmental incidents at the factory during the reporting period 2008.

Appendix 1 Ground Water Analysis

1st Section of the Report

DAWN MEATS (EXPORTS) LTD.

Analysis Report

Dawn Pork and Bacon

Ms Joanne Day Grannagh

Co. Waterford

microchem

LABORATORIES

Clogherane Dungarvan Co Waterford

Tel: +353 (0) 58 48300 Fax: +353 (0) 58 42855

Email: info@microchem.ie http://www.microchem.ie

Sample No:

28003875

PO Number:

24111

Batch Number:

Water Sample 03/03/08

Sample Type:

ater (Well Sample)

Description:
Date Received:

03-Apr-2008

Analysis End Date:

10-Mar-2008

TEST	RESULT	Pagametus Value
Colour - SOP 2.1014	10Hazen	
Fluoride - Palin Test	0.2mg/L	0.8 mg 1L
Iron (as Fe) - AAS	28.4µg/L	200 ug 1/L
Nitrate (as N) - SOP 2.1179	7.79mg/L	50 mg/L
Odour - APHA 20th Edition	Odourless	DingiL
Oxidisable Substances - EP 2008	Complies	-
Sodium (as Na) - AAS	28mg/L	Onen all
mmonium -NH4 - SOP 2.1179	0.21mg/L	200mg/L 0.30mg/L
hloride - SOP 2.1179	50mg/L	(1
itrite (as N) - SOP 2.1179	ND<0.02mg/L	250 mg/L 0.5 mg/L
H - SOP 2.1025	7.15	317,12
Ilphate - SOP 2.1179	38mg/L	250mg/L

The above pesults camply with the disective (f. by 12.3.08)

Note: 420 drocked against European Communities (deunking water) (no.2) Regulations

700G

Page 1 of 2

Analysis Report

Dawn Pork and Bacon Ms Joanne Day Grannagh Co. Waterford

Received 17-04-08 18 ED: 6/5/08 of

microchem

LABORATORIES

Clogherane Dungarvan Co Waterford Ireland

Tel: +353 (0) 58 48300 Fax: +353 (0) 58 42855

Email: info@microchem.ie http://www.microchem.ie

Sample No:

28003874

PO Number:

24111

Batch Number:

Water Sample, 03/03/08

Sample Type:

WATER

Description: Date Received:

03-Mar-2008

Analysis End Date:

15-Apr-2008

TEST	RESULT	Parametric Value
* Aluminium (as Al) - Subcontracted Laboratory Method	<200 μg/L	300 hall
* Arsenic - Subcontracted Laboratory Method	<10µg/L	10 mail
* Cadmium - Subcontracted Laboratory Method	<5 μg/L	5 judil
* Chromium - Sub-contracted	<50 μg/L	SOMAIL
* Copper - Sub-contracted	<2.0 mg/L	2 regil
* Cyanide (Sub) - Subcontracted Laboratory Method	<50 μg/L	Somall
* Lead - Subcontracted	$<10\mu g/L$	25/276
* Manganese (as Mn) - Sub-contracted	<50 μg/L	sough
* Mercury (as Hg) - Subcontracted Laboratory Method	<1.0 μg/L	
* Nickel - Sub-contracted	<20 μg/L	20 mg/c
* Organochlorine Pesticides - Subcontracted Laboratory Method	<0.10 µg/L	an jugic
* Organophosphorus Pesticide Residues - Subcontracted Laboratory Method	<0.10 μg/L	
* Polychlorinated Biphenyls - Subcontracted	<0.005µg/L	
* Polycyclicaromatic Hydrocarbons - Subcontracted Laboratory Method	<0.10µg/L	0.10 Jug/L

Note: H2O drodled against European Communities (dreuking Water) (no.2) Rogs

Appendix 2 AER Summary Data Table 2008

AER Returns Worksheet

REFERENCE YEAR 2008

FACILITY IDENTIFICATION
 Parent Company Name Dawn Meats (Exports) Limited
 Facility Name Dawn Meats (Exports) Limited
 PRTR Identification Number P0179
 Licence Number P0179-01

Waste or IPPC Classes of Activity

No. class_name

_	_	_	_	_	_	_	_	_	_	_	_	_		_	_						_	_	
Address 1 Dawn Meats (Exports) Limited	irannagh	Vaterford				eland	5681142		011	Main Economic Activity Processing and preserving of meat	aul Fitzpatrick	rendan.howlett@dawnmeats.com	perations Manager	51-309200		51-309292	0:0		0	0	2		
Address 1	Address 2 Grannagh	Address 3 Waterford	Address 4			Country Ireland	Coordinates of Location 25681142	River Basin District	NACE Code 1011	Main Economic Activity	AER Returns Contact Name Paul Fitzpatrick	AER Returns Contact Email Address brendan.howlett@dawnmeats.com	AER Returns Contact Position Operations Manager	AER Returns Contact Telephone Number 051-309200	AER Returns Contact Mobile Phone Number	AER Returns Contact Fax Number 051-309292	Production Volume	Production Volume Units	Number of Installations	Number of Operating Hours in Year	Number of Employees	User Feedback/Comments	Web Address

2. PRTR CLASS ACTIVITIES Activity Number

Activity Name

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable? No	Have you been granted an exemption ? No	If applicable which activity class applies (as per	Schedule 2 of the regulations) ?	Is the reduction scheme compliance route being	besn consideration of the cons

4.2 RELEASES TO WATERS		PASS FOLLOW FACILITY MATERIAL	The management of the state of the second parameters and the second second second is the second		\$2.00 m		ALC BACKS A
SECTION A: SECTOR SPECIFIC PRTR POLL	UTANTS	a on ambient monitoring of	dorm/surface water or groundwater, o	onducted as part of your licen	e requirements, should NK	OT be submitted under AER / P	RTR Reporting as this only cor
	RELEASES TO WATERS	THE RESERVE OF THE PERSON NAMED IN					
	POLLUTANT					QUANTITY	
			Vethod Used				
No. Annex II	Name	M/C/E Method Code	Designation or Description Emission Point 1	ission Point 1	T (Total) KG/Year	A (Accidental) KG/Year F (Fugitive) KG/Year	F (Fugitive) KG/Year
				0.0	0.0	0.0	0.0

No. Amaxii Name MCE Method Used Desgrated used No. Method Used Desgrated Used Desgrated Used Used Desgrated Used Used Desgrated Used Used Used Used Used Used Used Us	QUANTITY 1 T (Total) KG/Year A (Accidental) KG/Year F (Fugibre) KG/Year
Namo MCE M	
Name M/CE M	
abort designation of the relevant the relevant	
designation of the relevant	
the relevant	
standard (e.g.	
Total nimoen M 14385:2004)	000

	NEEL ASES O WAILING								
	POLLUTANT						au	QUANTITY	
	The state of the s		M	Method Used		T CT-LED VO Near		Annidos Indiana	MONON Continued to Monoton A A
Politiant No.	Name	M/C/E	short	werned code Designation or Description Emission Point 1	Emission Point 1	(logal) i		Accidental No. Tear	r (rugiuve) no/real
		de	designation of						
		-	the method						
			used: ETS,						
			IPCC,						
303	BOD	0	UNECE/EMEP		29	29371.8	29371.8	0.0	0.0
			short						
		B .	designation of						
		THE PERSON	the method						
			used: ETS,						
		Section 1	PC,		****	,	0040074	00	00
300	COU	3	Short		167	1.760162	1.769167	0.0	
		de	designation of						
		•	the method						
			used: ETS,						
			IPCC,						
240	Suspended Solids	0	UNECE/EMEP		99	66678.8	8.87999	0.0	0.0
			short						
		9 +	designation of						
			used: ETS.						
			IPCC,						
327	Nitrate (as N)	0	UNECE/EMEP		13	1319.52	1319.52	0.0	0.0
			short						
		ge de	designation of						
			used: ETS.						
			IPCC						
238	Ammonia (as N)	0	UNECE/EMEP		11	1185.28	1185.28	0.0	0.0
			short						
		de	designation of						
			the method						
			used: E13,						
308	Deteroents (as MBAS)	0	NECE/EMEP		-	100.25	100.25	0.0	0.0
			short						
		de	designation of						
			the method						
			used: E13,						

0.0

318.53 318.53

Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE WCP/KK/059(A)/07 W0184-Name and Address of Final | Licence / Permit No. of Fina WCP/KK/030(A)/07 WCP/KE/61C/05C ONLY) Enva Ireland Ltd, Portlaoise, V Co. Laois Irish Lamp Recycling Co. V Ltd, Athy, Co. Kildare V Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY) Rossendale, Lancashire, UK Six Cross Roads, Waterford Onsite in Ireland Western Proteins Co. Ltd Athy, Co. Kildare
Onsite in Ireland Western Proteins Ballyhaunis, Co Mayo
Onsite in Ireland Western Proteins Silverwood I.E., Craigavon,
Onsite in Ireland APC - Regal Processors Co Armagh
Onsite in Ireland Agri-life Six Cross Roads, Waterford Address of Recoverer / Disposer / Broker Dunlavin, Co Wicklow Portlaoise, Co. Laois Name and Licence / Permit
No. of Recoverer / Disposer /
Broker Agri-life Veolia Environmental Holchem Ltd Veolia Environmental Location of No. of Recoverer / Di Treatment Broker Onsite in Ireland Dublin Products Ltd Onsite in Ireland Enva Ireland Ltd Services Onsite in Ireland Services Onsite in Ireland Abroad Method Used Weighed Method Used Weighed Weighed Weighed Weighed Weighed Weighed Weighed Weighed Waste
Treatment
Operation M/C/E M ZZZ ΣΣ Σ Σ R13 R11 R11 10 R3 Description of Waste 0.0 Drums and other Plastic 8200.0 Corrugated Cardboard 23960.0 General Refuse 4198040.0 Organic Waste 0.0 Fluorescent 2089632.0 Offals 0.0 Bone 0.0 Waste Oil Quantity
T/Year
2783099.0 SRM 788144.0 Blood Yes Yes 22 9 No European Waste 20 01 21 02 02 02 02 02 02 02 02 09 00 02 02 04 Transfer Destination C 13 08 02 02 02 99 To Other Countries 02 02 99 Within the Country 15 01 01 Within the Country Within the Country

Appendix 3 Annual Land Spreading Summary

Organic Waste Register Part II Annual Land Spreading Summary Per Farm

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

Company:

Product: Nutrient Content of Waste:

WWTP Sludge & Lairage Slurry 5.632 kg N/ tonne 2.112 kg P/tonne

George Jennings, Island View, Fornaght, Dunmore East, Co. Waterford Landowner:
Nutrient Management Plan Reference:
Nutrient Management Plan Reference:
NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (14/12/07)
Submitted to EPA 21/12/07

				1	0	θu	18V	7	AgriLife			AgriLife AgriLife			AgriLife						
			ine					1	AgriLife A			AgriLife		1	AgriLife						
		tse	909																		
_							9/														
	48.1						101		00.00	48.10	1	00.00	48 10	1	0.00	48.10	L	0.00	Plot14	4	
	34.2						JO!		00'0	34.20	1	0.00	34 20	1	0.00	34.20	L	0.00	Plot13	4	
	34.2						101		00.00	34 20	1	0.00	34 20	1	0.00	34.20	L	0.00	Plot12	+	
	1 36.7						10[0.00	36 70	1	00.00	07 35	Т	0.00	36.70	L	0.00	Plot1	+	
	15.4		L				tol		00.00	15 40	1	00.00	15.40	1	00.00	1540	L	0.00	Plote	+	
	3 12.6					3.55	stol		00.00	1260	1	00.00	1260	١	00.00	1260	L	0.00	Plots	-	
2-3,8-9,1	41.3						100		00.00	1130	П	00.00	44 30		0.00	41 30	1	00.00	Plot3	2000	
Raheen:2-3,8-9,11-14	156.4					0	30	d	00.0	156 40	130.40	0.00	455 40	100.40	0.00	156 40	200	00.00	Chold	- Port	
	33.0					8	510	id	0.00	00000	33,00	0.00	0000	33.00	0.00	2200	22.00	0.00	Diota	LIGHT	
Ballygunnermore:1-3	148.6					-	210	ld	0.00	440 60	148.60	00'0	0000	148.00	00'0	140 60	140.00	0.00	Cholo	TOTA	
Ballygun	17.1						110	ld	0.00	47.40	17.10	00.00		17.10	00.0	47 40	11.10	0.00	27	FIOLI	
_	78.6						S 10	ld	0.00	000	18.60	00.0		18.60	78.60	000	0.00	0.00	27.10	CIOIA	
	29.2		Ī			2000	p10	ηd	00.0	0000	29.20	000		29.20	29.20	000	0.00	00.0		F1014	
or:1-5	84.1					-	Elc	old	000		84.10	000	0	84.10	84.10	000	0.00	00.0	9	Plot3	
Kilcop Upr:1-5	161.8					2-	Ltc	Pld	000		161.80	000	9	161.80	00.0		161.80	0.00		Plot1-2	
	57.0						610	Ple	000	2	57.00	000	0.0	22.00	00 0		27.00	0.00		Plot9	
	65.1					10000	810	Olc	32 GO	25.00	32.50	000	0.00	32.50	00.0		32.50	32.60		Plot8	
9	30.0						710	Olc	000	00.0	30.00	000		30.00	000	- 13	30.00	00.0		Plot7	
ht:4-5,7-9	30.5						510		6		30.50	000		30.50	000		30.50	0.00		Plot5	
Fornag	42.2	1						Olc	42.20		0.00	1		0.00	000		0.00	42.20		Plot6	
Ballyglar Fornaght:	49.0	200					91	Ole	40.00	49.00	00.00	00.0	00.00	00.0	000	0.0	0.00	49 00	000	Plot6	
	151 5	2					Si	010	000	0.00	151.50	1	06.161	0.00	000	0.00	0.00	151 50	2	Plot5	
.1-5:	26.2	4					þl	101	1000	0.00	36 20		4.30	31.90	000	0.00	31.90	4 30	00:	Plot4	
Woodstown Upp. 1-5:	62 4						51	101	4	0.00	53 10		0.00	53.10	000	0.00	53.10	000	0.00	Plot3	
Woodst	40.0						Z	10)	1	21.20	24 80	1	0.00	24 80	Т	0.00	24.80		21.20	Piot2	
	1						L	101	_	0.00	37.50	1	00.00	37.50	1	0.00	37.50		_ 1	Plot1	
whilwr	4004	130.4					3	101	9	0.00	108 40	130.40	0.00	198 40	2	198.00	0.40	000	0.00	Plot3	
Woodstown I wr. 2-3:	000	00.3					2	lot	d	0.00	06 30	00,30	0.00	DE 3A	200	86.00	030	000	0.00	Plots Plot2	
TOTAL	1	1014.1	Wasto	Demoined	removed	trom	Licensee &	Spread (m3)*	and and a	145.00	1660 10		155.80	151330	١	475.90	1037 40		110.10	Plots	
	The state of the s	Permitted Load (III /:							Spreading Dates	July 9 2008	Contraction of the contraction o	Capacity Remaining	August 8 2008	Consisting Domaining	Capacity Nemalining	August 26-29 2008	Danacily Domaining	Sapacity Capacity	Total Spread 2008	20	

Signed:

Deputy Epvironmental

Co-ordinator

Date: 294/10/08

EVR 09b Issue Date: 14/12/05 Issue Date: G Walsh

Company:

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

WWTP Sludge & Lairage Slurry
Vaste: 5.632 kg N/ tonne

Product:

2.112 kg P/tonne

Nutrient Content of Waste:

Joe Mulhern, Lemybrien, Kilmacthomas, Co Waterford

Landowner:

NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (14/12/07) Nutrient Management Plan Reference:

Submitted to EPA 21/12/07

Newtown Plots 9, 11, 14 TOTAL

Dermitted Load (m3).	0 202	27 0	70 9	108 2					
rea Foad (III).		6.12				Ī			Γ
	Waste					ţsı	19		
	Removed					ecs	Ine		
	from					iore	H:	3	1
	Licensee &				JƏL	nL	ìo é	10 E	эрг
	Spread			100000	lts:	оч	эш	эш	sea
reading Dates	(m ₃)*	Plot9	Plot11	Plot14	∍M		DAI	SΝ	ds
Aug-27	100.00	27.90	70.90	1.20			AgriLife	AgriLife	
Capacity Remaining	107.00	0.00	00.00	107.00					П
stal Spread 2008	100.00	27.90	70.90	1.20					\neg
Newtown Plots 9.11.14:	ts 9.11.14:	Plot9	Plot11	Plot14					

* On advised equivalency of 1000kg = 1m³ organic wastę

Signed:

Deputy Environmental attonto

Date: 29/10/08

Co-ordinator

EVR 09b Issue Date: 14/12/05 Annroved bv: C Coakley Issued by: G Walsh

Organic Waste Register Part II - Annual Land Spreading Summary Per Farm

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

Company:

Product: WWTP Sludge & Lairage Slurry
Nutrient Content of Waste: 5.532 kg N/ fonne 2.112 kg P/tonne

Landowner: James Power, Ballinanoynatragh, Dunmore East, Co. Waterford Nutrient Management Plant Reference: Nutrient Management Plant Reference: Nutrient Water for Dawn Manage Ldd, Grannagh, Co. Klikenny (14/12/07) Submitted to EPA 21/12/07

46.8 6.25 177.8 31.8 26.1 33.7 11.9 8.8 22.4 10.3 17.1 22.6 8.3 17.3 17.3 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	Dally	ń	Sallynanioyni	Ballynamoyntragh Plots 7-13:				n		-		l				L	***	40.0	4 4	16.4	1111	7.4	18.3	2.5			
46.00 6.02.0 177.0 31.00 1.00 0.00 0.00 0.00 0.00 0.00 0	18.5	54.6 18.5	18.5	16.1	37.3 4				33.7	11.9	89.00	23.4	10.3			17.5	14.4	13.0							1	1	
The color The											_													_	cea	ailu	
The color The																										sH lo	10 Teb
46.00 6.20 17.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	81	81			011		SIN			£10	1-30	- Gto	910				Ettol	₽L10[_		021016			emeV	Name
46.00 6.20 177.00 31.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0			_	Ole		old			bid	d	d					d	d	ľ	0	ľ	ľ		Supply	Chank		Anril ife
1	0000	0000	0000	L	L			0	0	00.00	0.00						00.00	0.00									
USD USD <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td>1</td> <td>1</td> <td>000</td> <td></td> <td></td> <td>11 90</td> <td>R BO</td> <td>1</td> <td>1</td> <td>100</td> <td></td> <td></td> <td>14.40</td> <td>13.00</td> <td></td> <td></td> <td></td> <td>7.10</td> <td></td> <td>50</td> <td></td> <td></td> <td></td>	0.00	0.00	0.00		1	1	000			11 90	R BO	1	1	100			14.40	13.00				7.10		50			
0.89 0.80 0.80 0.80 0.80 0.80 0.80 0.80	18.45 16.11	16.11	16.11				0.00	700		200	000	1	1	1			14.40	13.00	40			7.10			Sunny A	\griLife \	AgrilLife
0.00 0.00 0.86 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.0	18.45 16.11	16.11	16.11		37.26			70	1	08.11	0.00				1		000	000				0.00		00			
1777.00 31.60 25.10 33.70 11.99 88.80 25.34 10.39 11.21 25.00 0.390 11.2	00.0 0.00 0.00	0.00	0.00					.20	1	0.00	1	-	1	1		1	1	L	ľ.	L			L	20			
Plot Plot Plot Plot Plot Plot Plot Plot	50 18.45 16.11 37.26	16.11	16.11		_			09.	33.70	11.90					5		04.40	+	1		1	1	+	1			
	00000	07-10	57.00	1		4 A Diosested	Diot13 Dio	plott Diot1	Chold	Piot3	Plot4 F	_	_		-	Plot10	-		_	-	811014	4	4				

Signed: Deputy Environmental Co-ordinator

EVR 09b Issue Date: 14/12/05 Issued by: G Walsh Annowed by: C Coakley

Company:

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

WWTP Sludge & Lairage Slurry

Product:

2.112 kg P/tonne 5.632 kg N/ tonne

Nutrient Content of Waste:

Landowner:

Brigid Wall, Newtown, Kilmacthomas, Co Waterford

NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (14/12/07) Nutrient Management Plan Reference:

Submitted to EPA 21/12/07

				f	о е	ame	is N	AgriLite		Agril ifo	Agiilie		AgriLife					
		ier	anı				INS	0.00 Sunny Sunny AgriLife			0.00 Sunny Sunny AgilLile		70.00 Sunny Sunny AgriLife					
		ţst	909	TOT	ını	оч	81⁄	Sunny		0	Sunny		Sunny					
					рег	tee	W	Sunny		0	Sunny		Sunny					
	70.5						Plot15	0.00	70.50	000	0.00	70.50	70.00	0.50	0.00	1	Plot15	
	105.6						Plot13	00.00	105.60		0.00	105.60	105.00	09.0	0.00		Plot13	
	34.2						Plot12	0.00	34.20		0.00	34.20	34.00	0.20	0.00		Plot12	
	32.7						Plot10	0.00	32.70		0.00	32.70	32.00	0.70	000		Plot10	
	48.0						Plot8	32.34	15.66	-	16.00	32.00	0.00	48.00	16.00		Plot8	
2,13,15:	58.2						Plot4	00.00	58.20		0.00	58.20	58.00	0.20	000	0.0	Plot4	
Newtown Plots 1-4 & 8,10,12,13,15:	9.69						Plot3	0.00	09.69	The second liverage and the second	20.00	49.60	49.60	20.00	20.00	20.00	Plot3	SS TSSMINGS
n Plots 1-	9.66						Plot2	00.00	99.60	١	99.60	0.00		0,	00 60	99.00	Plot2	000000000000000000000000000000000000000
Newtown	41.7						Plot1		41.70		41.70	000	000	4			Plot1	
TOTAL	560.1	Waste	Removed	from	Licensee &	Spread	(m ₃)*	32.34	527 76	0	177.30	350 46	348 60	1 86	EEO 2A	230.24	0.12.13.15:	
	Permitted Load (m ³):						Spreading Dates	14-Anr-08	on the state of th	Capacity Remaining	17-Apr-08	painiema Nijocac	3.9 Line 2008	Canacity Remaining	Capacity Nemaning	l otal Spread 2000	Newtown Plots 1-4 & 8.10.12.13.15:	MCMICONIII

* On advised equivalency of 1000kg = 1m³ organic waste

Signed:

Deputy Environmental Co-ordinator

Date:

Issued by: G Walsh Approved by: C Coakley Issue Date: 14/12/05 EVR09b

Company:

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

Product:

WWTP Sludge & Lairage Slurry

2.112 kg P/tonne 5.632 kg N/ tonne

Nutrient Content of Waste:

Landowner: Eamonn Doherty, Ballyrobin, Ferrybank, Co Waterford Nutrient Management Plan Reference:

NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (14/12/07) Submitted to EPA 21/12/07

		ecast	-1 Tc) ƏL	neN	Supply Adril ife Adril ife			Supply Adril ife Adril ife						
	-				səW	Curan	onino		Sunn	5					
							0.00 Suriny		20 00 Cuppy	Sulliy				_	
-	44.5			5.1	rjold			44.50			5.52	000	i	Plot14	
	30.7			3	110IC	000	0.00	30.70	07.00	30.70	00.00	000		Plot13	
	49.0			7	rtolc	100	0.00	49.00	000	49.00	0.00	000	0.0	Plot12	
	59.8			L	rjold		0.00	59.80	0	59.80	0.00	000	00.0	Plot11	
	37.9			0	11019	H	0.00	37.90		37.90	0.00	000	0.00	Plot10	
	20.8				61019	4	0.00	50 80		50.80	00.00	000	0.00	Plot9	
	88.8				8Jol	d	7.20	8160	00.10	81.60	0.00	1	1.20	Plot8	
	35.0				Tjol	d	35.00	000	0.00	0.00	0.00	1	35.00	Plot7	
	44.8				910l	d	44.80	000	0.00	0.00	0.00		44.80	Plot6	
	33.0				G10	Ы	33.00	000	0.00	0.00	00.0		33.00	Plot5	1
	24.6				₽ţo	ld	24.60		0.00	0.00	000	20.0	24.60	Plot4	
ots 1-14:	25.1				Sto	ld	25 10		0.00	0.00	000	-1	25.10	Plot3	
Ballynamona Plots 1-14:	3 22.5				Sto		13 RO 22 50 25 10	20:33	0.00	00.00	000	-1	13.80 22.50	Plot2	1
Ballyna	13.8				FJC	lld		_	0.00	0.00				Plot1	
TOTAL	560.3	Wa	from	Licensee &	Spread	(m)	206 00	200.00	354.30	348.78	6 60	20.0	554.78	Plote 1-14.	1000
	Permitted Load (m ³):		+-			Spreading Dates	8000 6	June 3 zouo	Capacity Remaining	August 8 2008	August o zoos	Capacity Remaining	Total Spread 2008	Rallynamona Plots 1-14:	DAIIVIIAIIVIIA

* On advised equivalency of 1000kg = 1m³ organic waste

Signed:

Deputy Environmental Co-ordinator

Date: 24/10/58,

EVR 09b Issue Date: 14/12/05 Issued by: G Walsh Approved by: C Coakley

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

Abattoir squeezed paunch Product:

Nutrient Content of Waste:

Company:

4.994 kg N/ tonne

1.544 kg P/tonne

Landowner: William Simon (Pip) Ryan, Newbawn, New Ross, Co. Wexford Nutrient Management Plan Reference:

NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (05/12/07) Submitted to EPA 21/12/07

			e of ader	Nam Spre	S Ryan			S Ryan	8							
		laulier	4 ìo ə	msN	Agrilife S)	-1	Agrilife S								
		recast	our fo	P4 81												
	-		трег	Weat	0.00 Sunny Sunny	0		unny Sunny								
	74.2		8	나이러	0.00	00	74.20	74.20 Sunny	000	0.00	0.00	0.00	14.00	74.20	Plot18	
	160.9		ΑΛ	Plot1	0.00		160.90	160.90	000	0.00	0.00	0.00	0000	160.90	Plot17A	
	151.6		9	rtolq	00.00		151.60	151.60	0	0.00	0.00	0.00	00 727	151.60	Plot16	
	164.3		S	riold	00.0		164.30	164.30		0.00	0.00	0.00	00,00	164.30	Plot15	
	91.9		t	- امزا	000)	91.90	91.90		0.00	00.00	0.00		91.90	Plot14	
	188.9		8	, FJOIC	000		188.90	188.90		0.00	0.00	0.00		188.90	Plot13	
	122.7		87	Shole	000	9	122.70	122 70		0.00	0.00	0.00	-	122.70	Plot12B	
	208.6		Αŝ	Stiolo	000	0.00	208.60	208 60	00.004	0.00	00.00	000	0.00	208.60	Plot12A	
	0.08			L L101c	000	0.00	80.00	BO OO	00.00	0.00	0.00	000	00.0	80.00	Plot11	
	100.7		- 1	01101	100	0.00	100.70	100 70	07.001	0.00	0.00	000	0.00	100.70	Plot10	1
	66.7			6101	1000	0.00	02.99	02 33	00.10	0.00	0.00	000	0.00	02.99	Plot9	+
	15.4			8101	d 000	0.00	15.40	45 40	04.0	0.00	0.00	000	0.00	15.40	Plot8	
	108.9			Tjol	T U	0.00	108.90	400 00	100.30	0.00	0.00	000	0.00	108.90	Plot7	
8:	8.6			Stol	d 0	0.00	8.60	000	8.00	0.00	000	000	0.00	8.60	Plot5	1000
Plots 1-1	100.3			Stol	d 60	0.00	100.30	0000	100.30	0.00	00 0	0000	0.00	100.30	Plot	┥
Newbawn Plots 1-18:	89.7			rjol	d	00.09	29 70	01.07	29.70	0.00	000	0000	0.00	89.70	Plot1	LIGHT
TOTAL	1733.4	Waste Removed	from Paunch Site	& Spread		00.09	1673 40		1673.40	0.00	000		0.00	1733.40	-	7.01-1 510141
	Permitted Load (m ³):				1	February 12 2008	Canacity Remaining	Capacity Nemaning	August 28 2008	Capacity Remaining			Capacity Remaining	Total Spread 2008	Nowhow	INCMINANT

* On advised equivalency of 1000kg = 1m3 organic waste

Signed:

Deputy Environmental Nong P IN

Date:

Co-ordinator

Issued hv. G Walsh Approved by: C Coakley Issue Date: 14/12/05 EVR09b

Organic Waste Register Part II - Annual Land Spreading Summary Per Farm (Paunch)

Company:

Dawn Meats Exports Ltd IPPCL P0179-01 & Dawn Pork & Bacon IPPCL P0175-01

Product:

Abattoir squeezed paunch

Nutrient Content of Waste:

4.994 kg N/ tonne

1.544 kg P/tonne

Landowner:

William Simon (Pip) Ryan, Newbawn, New Ross, Co. Wexford

Nutrient Management Plan Reference:

NMP for Dawn Meats Ltd, Grannagh, Co. Kilkenny (05/12/07)

Submitted to EPA 21/12/07

Total volume of organic waste that can be spread on to the farm 2008 (m³), Plots 1-18:

Month	Paunch Removed from Licence Holder(kg)	Name of Haulier	Name of Spreader	Spread (m3)*	Cumulative Total Stored (m3)*	Permitted Loading Remaining (m3)*	Date Spread	Weather	48 hour forecast	Name of haulier	Name of spreader
Stored on farm from											
last spreading in		D-14	A muil life		0.00	1733.4					
October 2007 Jan-08	85060	Dalton	AgriLife AgriLife	0	85.06			7			
							Paunch spread on 12/02/2008	Sunny	Sunny	Agrilife	S Ryan
Feb-08			AgriLife	60				- Curry	Carriy	, .g	,
Mar-08	70400	Dalton	AgriLife	0	173.16			-			
Apr-08	94880	Dalton	AgriLife	C	268.04	1673.4		_			
May-08	85560	Dalton	AgriLife	C	353.60	1673.4					
Jun-08	68600	Dalton	AgriLife	C	422.20	1673.4					
Jul-08	33900	Dalton	AgriLife	(456.10	1673.4					
Aug-08	71840	Dalton	AgriLife	1673.4	-1145.46	G C	Paunch spread on 28/08/2008	Sunny	Sunny	Agrilife	S Ryan
Sep-08		Dalton	AgriLife	(-1067.36	6 0					
Oct-08	83560	Dalton	AgriLife	(-983.80						
Nov-08			AgriLife	(-922.82	2 0					
Dec-08			AgriLife	(-856.32	2 0	At end Dec 2008				
TOTALS:	877080		1	1733.4							

* On advised equivalency of 1000kg = 1m3 organic waste

Signed:

Deputy Environmental

Date:

Appendix 4 Process Effluent Monitoring 2008

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

																															11 Totals	109	
(<420C)		14		14		11		4.4		14			14	=	14		14			14		11		11			11		11		11	14	
8.5) (<420		7 50	00.7	7 43	74.7	7 25	04.7	7 4 4	41.	7 53	00.7		7 26	00.7	1 61	/0./	7 45	04.7		7 22	67.1	7.25	04.1	7.45	2		7 23	67.1	7 25	24.7	7.31	14	
		0.46	0.40		T	Ì		24	0.40						010 1	9.256						5203	07.00						2010	0.0.0		4	
		U	0			\dagger	+	L T	C		\dagger	+			3	77				1	+	107	171						c,	7			
		0,000	0.0212					7070	0.131		T				0	0.0438						00000	7.3093						0 00 44	0.2341			0 (
(20mg/l)		0	0.23					0	0.36							0.1						7	5.51						C	000			
		0	9.66				1		32.76		1		1			35.04	1	1				1,0	49.45						0	50.16			O
(150mg/l) (67.5kg)			105			+	1		06	1	1	1				80		†		1		,	115					Ì	0	120			
			6.348			+			24.024	+	1					38.544				+		1	27.52	+	0	+		1	1	25.08		1	ç
/l) g)			69		1	+	+		99					+	1	88		1	1				64	1						09	+		
67.5kg} //			6.072						18.928							36.792				1			43.43							35.112			2
(150mg/l) (67.5kg)			99			1			52	1						84							101							84			
(675kg) (1			97.52		80		338.94		567.84		527.24			281.79		621.96		670.24			318		380.55		484.43			379.452		434.72		320.1913	14
			1060		800		1260		1560		1960			1010		1420		1420			1060		885		1255			1236		1040		1360	
(2362kg) I)			437		376		1240.09	20	1779.96		1291.2			1478.7		2168.1		2227.84			1929		1952.2		2018.78			1574.91		2014.76		974.7	14
mg/l) (2:			4750		3760		4610		4890	1	4800			5300		4950		4720			6430		4540		5230			5130		4820		4140	
			294.4						1183							985.5							1114.99							944.68			5
(4000mg/l) (1350kg)			3200						3250							2250							2593							2260			
		307	92	254	100		269	110	364	89	269			279	103	438	83	472			300	105	430	112	386			307	89	418	81	235.4	23
Date (675m3)	/01/2008	02/01/2008	03/01/2008	04/01/2008	05/01/2008	06/01/2008	07/01/2008	08/01/2008	09/01/2008	10/01/2008	11/01/2008	12/01/2008	13/01/2008	14/01/2008	15/01/2008	16/01/2008	17/01/2008	18/01/2008	19/01/2008	20/01/2008	21/01/2008	22/01/2008	23/01/2008	24/01/2008	25/01/2008	26/01/2008	27/01/2008	28/01/2008	29/01/2008	30/01/2008	31/01/2008	Average	#Tests

issue Date, UTIVOTO

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

			Month: February 2008	-ebrua	ry Zuus	(Dot	OFG	OFG			
Flow (675m3)	e :	BOD BOD (4000mg/l) (1350kg)	BOD (1350kg)	(7000 (Mg/l)	COD (2362kg)	(2000mg/	SS (675kg)	A (150mg/l)	A A (20 (150mg/l) (67.5kg) /l)	00mg		50mg/l)		Det (20mg/l)	9	gu T	101.2kg	(101.2kg pH (6.0 Temp	Temp (<420C)	_
/02/2008	83																			
02/02/2008											+					+				
03/02/2008			3							1								1 22	**	
04/02/2008	288			3150	248.85	1635	129.165											67.7		
05/02/2008	79															-		1	1	
06/02/2008	382	629	86.988	5150	679.8	1920	253.44	93	12.276	92	10.032	130	17.16	5.04	0.6653	0	0.396	7.25	11	
07/02/2008	132														1	1			,	
08/02/2008	349			4270	1490.23	1650	575.85									1		7.31	11	
09/02/2008																1		+		
10/02/2008																1		1		
11/02/2008	332			6310	757.2	1470	176.4											7.23	11	
12/02/2008	120																			
13/02/2008	393	3025	299.475	4580	453.42	1750	173.25	87	8.613	98	8.514	115	11.385	2.3	0.2277	5.2	0.5148	7.25	11	
14/02/2008	66										1				1	1			1	
15/02/2008	329			6400	2105.6	860	282.94									1		7.31	11	
16/02/2008											1				1	\dagger				
17/02/2008															1	†		0	;	
18/02/2008	344			5210	609.57	1360	159.12				+				†			00.7		
19/02/2008	117			11												-	1	1	1	
20/02/2008	463	2532	260.796	5110	526.33	1235	127.205	92	9.476	75	7.725	130	13.39	3.82	0.3935	D .	0.927	67.7		
21/02/2008	103												1		1	+		1	**	
22/02/2008	380			5720	2173.6	780	296.4											7.07	=	
23/02/2008													+					\dagger		
24/02/2008													+			1		1 0 4	14	
25/02/2008	390			6790	760.48	1075	120.4						1					+0.7		
26/02/2008	112													T,		C	00000	1 20	**	
27/02/2008	525	2401	602.651	6550	1644.05	1065	267.315	84	21.084	70	17.57	135	33.885	4	1.004	(3	10.323	00.7	=	
28/02/2008	251															1		7 5.4	**	
29/02/2008	429			5190	2226.51	1475	632.775											40.7	- 0	11 Totale
Average	281.0		312.5	10	1139.6	-	266.2		12.9		11.0		19.0		9.0		0.0	5.7	11.0	ומומ
# Tests	21		4	-	12		12		4		4		4		4 (4 (7 0	4	
NCR	0		0	_	0	_	0	_	0		0		0		0		0	0	0	

issue Date: Urivoivo

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

																																		מ
	= 0																															ŀ	11.0 lotals	
(00		I	1		14	F	1	11		1	11	1	11	3	F		,			1		;	11			44		1	11			11	11.0	12
8.5) (<42oC	-	+	7 07	,n:	00	00.7	-	7.14		1	7.07		7.00	;	7.14	+	100	7.07	-	-	7.00	1;	7.14	+	+	CC	67.1	(97)	+	+	-	7.26	7.1	12
8.5)		+	1	+		1.26	- '	-	+	+	+			-	+	+	-	+	+			-	+	+	+			+	+	+	-			4
_													1.557							0	0.275					3	1.240							
					3	12							o							ı	2						2							
		T			0	0.7224							0.0623		1	1		1	1		0.8954			T		0	3.952	1			1		4.	4
((I/bu		†	1	1	1	6.88		1		1	1		0.36	1	†	†	T		†	1	16.28	1	1	+		L	6.0	1	1		1			
(150mg/l) (67.5kg) (20mg/l)		+	1	+	-	14.175	+	+	+	1	+	1	20.76	+	+		+	+	+	+	6.05	+	+	+	+	1	39.52	1	+	1	+	\dashv	20.1	4
(1) (87.5	_	-	+	+		135 14.	+	+	+	+	+		120 20	+	-		+	+	+		110	+	+	+	-		S CA	-			+	4		
(150mc																																		
2	3.7					7.665							11.245								4.785						39.104						15.7	4
		†	1	1		73							65					1	1		87			1	1	1	94							
(150mg/l) (67 525) //	- Guer	1		1		10.71			1	1			14.013		1	1		1	1		4.345			1			26.208	1					13.8	4
. 3/ \/\pu	10/1/611	+	+	+		102	1		+			1	81	1	+	+		+	+	+	79	1	+	1	+		63	1	+			-		
1150r	001	1	+	52		6.	-	1	-	4	52		37		15	1		1	6.	+	52	12	-		4	4	364	.2				75	₹.	12
C. KELLEY	DYDYG)			113.52		132.3		646.17			138.425		292.37		68.75				368.9		70.125	68.75					36	499.2				520.875	276.1	•
(0.2)				1290		1260		1190			1225		1690		1250				820		1275	1250					875	1200				1695		
See at	Г			586.96		625.8		1824.48			559.35		1174.67		276.65				2321.9		188.1	267.85				1	2050.88	1976				2008.5	1155.1	12
	(Z362Kg)		-	0299		2960		3360 18			4950		6790		5030	-			5350		3420	4870		-	_		4930 20	4750				6180		
	(I/Bm	_		99				33			49				20			-	53	-		48		-				47				61	3.2	
1000	1350Kg			8	0	212.1							355.688								74.415						730.496						343.2	
	(4000mg/l) (1350kg)					2020							2056								1353						1756							
DOD	(400	-		386	88	493	105	543			323	113	481	173	55				284	434	473	55				8	485	416	72			325	279.6	0
Flow	(675m3)					7	-	47			,,,		7	15					.4	~	7						4	7				.,	27	
		01/03/2008	02/03/2008	03/03/2008	04/03/2008	05/03/2008	06/03/2008	07/03/2008	08/03/2008	09/03/2008	10/03/2008	11/03/2008	12/03/2008	13/03/2008	14/03/2008	15/03/2008	16/03/2008	17/03/2008	18/03/2008	19/03/2008	20/03/2008	21/03/2008	22/03/2008	23/03/2008	24/03/2008	25/03/2008	26/03/2008	27/03/2008	28/03/2008	29/03/2008	30/03/2008	31/03/2008	le	
	Date	01/0	02/0	03/0	04/0	0/90	0/90	0//0	0/80	0/60	10/0	11/0	12/0	13/0	14/0	15/0	16/0	17/0	18/0	19/0	20/0	21/0	22/0	23/0	24/0	25/0	26/0	27/0	28/0	29/0	30/0	31/0	Average	# Toche

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

																																01040	11.0 10tals	105	0
	, due			7		11			1		11	1	11		;	11	1	11	1			1	11	44	=	*	=		;	11	11		11.0	13	0
	0	8.5) (<		7.42		7.36	+		7.69		7.74	1	7.13	+		7.68	1	7.70	9	7.13		1	7.23	1 20	67.7	7	7.13			7.25	7.14	-	4.7	13	0
				1.63275							1.9425					T		3.025	1					9	5.40						5.18		3.4	2	0
OFG C	(150mg (101.2kg	^ (V	1	15.55	1			1		1	18.5		1	1	1	1		25	†			+	+	0	87	1	1	†			28	1			
) len	(13.5kg (1.575							1.5225							1.936	1		1	1	1		3.315		1				3.145		2.3	2	0
e ert		(20mg/l)		15							14.5							16						!	1/						17				
	Δ.	7.5kg) (2		12.285	+	+				1	11.025			1	+	1		14.52	1				1		17.55	+		1			27.75		16.6	2	0
	House 1	(150mg/l) (67.5kg)		117		+					105		1	1	1	1		120							06			1			150				
		" ,		9.765	1	+					11.13	+	+			+	+	11.495	+	+	+	+	+		21.84	+	+	+			11.84	-	13.2	2	0
1_	(200mg (47.25k	(B)		93							106			1				95 1	+	+	+		+		112		+				64				
Д		17.5kg) /l)		10.71							7.98							11.616							17.55		1				26.825		14.9	5	0
	<	(150mg/I). (67.5kg)		102							92 .							96							06	1					145				
		5kg)		149.1		471.58			139.4		183.75		307.45			209.25		153.065		648.74			142.5		226.2		612.3			670.185	254.375		320.6	14	0
Ni.	00mg			1420		1460			1640		1750		1430			1350		1265		1630			1140		1160		975			1405	1375				
SS	COD (20	(2362kg) I)		585.9		2070.43			464.95		720.3		1236.25			1047.8		717.772		2356.16			183.75		1092		2342.44			2265.75	1221		1254.2	14	0
COD	0	-		5580		6410			5470		6860		5750			0929		5932		5920			1470		2600		3730			4750	0099				
	BOD (183.855	The second						339.36							334.202							212.355						613.46		336.6	5	0
	BOD B	(l/gmi		1751			aif				3232							2762							1089						3316				
		(675m3) (40	115	432	105	323			255	85	447	105	215			410	155	402	121	398			333	125	483	195	628			417	477	185	291.4	21	0
	FIO	Date (67:	01/04/2008	02/04/2008	03/04/2008	04/04/2008	05/04/2008	06/04/2008	07/04/2008	08/04/2008	09/04/2008	10/04/2008	11/04/2008	12/04/2008	13/04/2008	14/04/2008	15/04/2008	16/04/2008	17/04/2008	18/04/2008	19/04/2008	20/04/2008	21/04/2008	22/04/2008	23/04/2008	24/04/2008	25/04/2008	26/04/2008	27/04/2008	28/04/2008	29/04/2008	30/04/2008	Average	#Tests	NCR

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

Filony F				MORITH. May 2000	INIAY 24	000	S				Д	۵.				Det	OFG	OFG			
	ü		COR	ROD	(7000		(2000mg	53	4	d	(200mg	g (47.25k	z	Z	Det	(13.5kg	(150mg	(101.2kg	pH (6.0 Te	dui	
1	Date (67	13]	(4000mg/l)	(1350kg)			· =	(675kg)	(150mg/l) (67.5kg	()/(6	(5)	(150mg/l)	(67.5kg	(20mg/l)	_	(1)			4400	
Control Cont	01/05/2008	517																	7 4 4	**	
Control Cont	02/02/2008	201			9200				9		+								ŧ		
Control Cont	03/05/2008								-												
Control Cont	04/05/2008										1										
A	05/05/2008										-								7 20	17.2	
150 158	06/05/2008	303			4610	0.00									-			4 6740	7 50	107	
1,500 1,50	07/05/2008	461										17			12.	1		1.0740	06.7	10.1	
2008 337 6760 2278412 750 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 25276 760 26276	08/05/2008	158													1				000	404	
100 100	09/05/2008	337			1929				.2		-			1					0.30	6.6	
	10/05/2008																				
1970 1970	11/05/2008										-								20 2	106	
Figure F	12/05/2008	355			524				12										0.00	0.00	
140 140 140 161	13/05/2008	224													;	-		0000	105	10.0	
182 183 194 1519 1940 364 1950 1960 1853 1940 1356 1950	14/05/2008	467													14	4		0.0000	60.7	0.01	
1200 1200	15/05/2008	182												1					107	46.0	
12008 12008 12008 12008 12008 12008 12008 1209 12008	16/05/2008	350			434				45		+			1					10.7	10.5	
1,200 2.89 2.89 2.83	17/05/2008																				
1508 289 1651 283.972 4430 765.96 840 133.56 1508 143.04 106 182.32 82 141.04 107 172 130 22.36 6.6 1.1352 1.5 0.258 7.01 120.08 120.08 142.04 142.	18/05/2008																		100	40.0	
72008 458 1651 28.3972 4430 761.96 1060 182.32 82 14.104 100 17.2 130 22.36 6.6 1.1352 1.5 0.268 7.01 72008 172 1651 22.31 6.10 1127.1 900 198.9 1.10 17.2 130 22.36 6.0 1.1352 1.5 0.268 7.01 72008 221<	9/05/2008	289			444				99	_				1					0.0	13.6	
	0/05/2008	159																0 200	7 04	47.0	
12008 172 1200 1127.1 900 198.9 90.73 900 198.9 90.73 900.73 <th< td=""><td>1/05/2008</td><td>428</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.230</td><td>10.7</td><td>7:11</td><td></td></th<>	1/05/2008	428																0.230	10.7	7:11	
12008 221 5100 1127.1 900 198.9 90.73 90.	2/05/2008	172									+			1					1 00	45.0	
	3/05/2008	221			510			198	6.										70.7	7.01	
72008 646 6120 1291.32 430 90.73 90	24/05/2008																		+		
72008 646 646 6120 1291.32 430 90.73 60.83 646 6120 1291.32 430 90.73 60.83 62 14.105 7.1 1.5407 7.1 2.4304 7.06 7/2008 217 488 2794 606.298 5510 1195.67 1000 647 647 65 14.105 7.1 1.5407 7.1 2.4304 7.06 7/2008 217 1000 647 1000 647 1000 647 1000 16.8 17.4 19.8 1.8 1.3	5/05/2008										+								7 44	15.7	
1/2008 211 448 2794 606.298 5510 1195.67 1980 429.66 50 10.85 87 18.879 65 14.105 7.1 1.5407 7.12 2.4304 7.06 1/2008 217 2910 1882.77 1000 647 16.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.3 17.1 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 17.4 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8	26/05/2008	646			612				73		+								44.	13.1	
72008 448 2794 606.298 5510 1195.67 1980 429.66 50 10.85 87 18.879 65 14.105 7.1 1.5407 11.2 2.4304 7.00 72008 647 100 647 100 647 100 10.81 17.4 19.8 17.4 19.8 17.4 13 7.1 72008 493.6 1347.8 306.9 16.8 17.4 4 4 4 4 4 13 100 0	27/05/2008	211																2 4204	1 00	47.0	
1/2008 217 1000 647 16.8 17.4 19.8 17.8 13.7 13.0 13.4 <th< td=""><td>28/05/2008</td><td>448</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>1</td><td></td><td></td><td></td><td>2.4304</td><td>00.7</td><td>7.71</td><td></td></th<>	28/05/2008	448										_		1				2.4304	00.7	7.71	
/2008 647 1000 647 647 1000 647 1000 10	29/05/2008	217								-	_								1	45.0	
72008 12008 15.0 16.8 17.4 19.8 1.8 1.3 7.1 333.0 493.6 1347.8 306.9 16.8 17.4 19.8 1.8 1.3 7.1 21 4 4 4 4 4 4 4 13 0 0 0 0 0 0 0 0 0 0	30/05/2008	647			291				17		_								70.7	13.2	
333.0 493.6 1347.8 306.9 16.8 17.4 19.8 1.3 7.1 7.1 13 4 4 4 4 4 13 7.1 13 13 4 4 4 4 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31/05/2008										_					- 1		,	-	40.6	Totale
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Average	333.0		493.	9.	1347.	8	306	6.	16	5.8	17.4	_	19.	ω,	۹.۲		 	1.7	10.0	Otals
	ests	21			4	-	3	x -	3		4	4	_		4	4		4	5	2	
	~	0			0	1873	0		0		0	J	_		0	J	_	0	0	0	

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01	(By Concentration and By Mass)

																														Totala	19.5 10tdls	
Temp (<42oC)		19.8		197		19.8	2.0	107	20.0	19.2	-	18.4			40.2	13.6	000	70.7	7 70	41.4		19.8	19.0	0.01	77.4	17.1					19.5	2
pH (6.0 Temp 8.5) (<420	+	7 29	2	7 24	17:1	02.2	0.00	7 05	00.7	7 05	20.7	104	10.7		1 00	70.7	1	7.18	000	6.98		7 22	7 00	1.00	7.18	67.7	+			-	۲./	2
(101.2kg k	1	T		11 368	0000					0 2884	0.7004	T		T	T	1	7000	1.0682						2070	2.618/5						3.8	4
50mg			\dagger	ac	07				+	0 0	0.7	+	\dagger		\dagger		0	8.8			+				67.9					-		
(13.5kg (1				4 073	4.07				+	1 220	6000		1	\dagger	+		0	1.3898				t	+		4.19		1	†	†		2.9	4
				0	71					ç	2						I I	12.75	1			†	1		10	1	1					
Det 7.5kg) (20n	\dagger			00	26.39					000	13.39	\dagger			+	\dagger	1	1.853	+	+					10.056			1			12.9	4
N N Det (150mg/l) (67.5kg) (20mg/l)		\dagger		L	69	1	+	1	+	00	130	+	+	+	+	1		17					1		24		1					
-				0	27.608	+	+	+	+		10.094	+	+	+				8.066	+		+		+		40.4335					-	21.6	4
(200mg (47.25k /l) g)	+	+			68	+					98		1	+	+	+	+	74	+			+	1		96.5 40	1	+		1	-		
			†		31.262		1				8.446	1	1		1	1		8.502		1					45.252	1					23.4	4
A A (150mg/l) (67.5kg)			1		77				1		82	1	1					78			1				108							
5kg)			482.295		552.16		460.81		254.87		123.6		663.255			161.59		148.24		460.41	+		620.59	641.3	534.225	368.72					420.9	13
/bm00			1185		1360		1135		1655		1200		1445			1430		1360		1030	1	1	1355	1325	1275	880				-		
(E)			1379.73		7.167		2334.5		475.86		218.36		1597.32			553.7		281.22		1519.8			1891.54	2018.28	2007.01	1994.44					1312.6	13
(7000 COD mg/l) (2362			3390		1950		5750		3090		2120		3480			4900		2580		3400			4130	4170	4790	4760						
					545.664						230.205							305.854							548.89						407.7	4
BOD BOD (4000mg/l) (1350kg)					1344 5						2235 2							2806 3							1310							
BOD (4000m			3	7		9	9		-	4		3	6			6	3		6	7:			6	88		6	99				8.	20
Flow (675m3)			353	407	128	406	406		321	154	351	103	459			349	113	433	109	447			399	458	484	419	156				322.8	. 4
Tarte Oate	/06/2008	02/06/2008	03/06/2008	04/06/2008	05/06/2008	06/06/2008	07/06/2008	08/06/2008	09/06/2008	10/06/2008	11/06/2008	12/06/2008	13/06/2008	14/06/2008	15/06/2008	16/06/2008	17/06/2008	18/06/2008	19/06/2008	20/06/2008	21/06/2008	22/06/2008	23/06/2008	24/06/2008	25/06/2008	26/06/2008	27/06/2008	28/06/2008	29/06/2008	30/06/2008	Average	# Tests

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

		_		_		_	_		_	_	_	_		1.	•1	T-	-T	T ~		_	T.,	<u> </u>	16	11.0	1			1.0	N 1 1	<u> </u>	- T	Totale	Olotais	0
2	(<420C)													16.4		46.4	2	48			700	6.02	202	21 5	0.12	70.5		46	44.4	14.0	6.12	104	18.3	10
0.0	8.5) (<	+	\dagger											000	0.00	420	10.0	20 2	0.00	+	700	46.0	7 04	00 0	0.30	01.7	1	6 43	24.0	0.40	7.04	- 0	6.8	10
7 6	00		†										T	1	T	2 200	0.9313	Ī			T		1 7094	1007:1	†			\dagger			1.684		4.1	3
i) filloci			+			+	+		-		+				1	0	2.3		+	1			4.0	7:1	1			1		1	4			
) (Surce)	=		1			T											4.2525		\dagger				6 000 3	2000			1			1	4.21	-	4.8	n
	((l/gm0			1		1	1			1		+		1			10.5		1			†	14 75	14.70							10			
	7.5kg) (2	\dagger				1			1		1	+		+		1	40.5	+		+		+	707 70	24.333		+			+		61.045		42.4	3
	(150mg/l) (67.5kg) (20mg/l)	1				1	+	\dagger	+		1	+	+	+	+	1	100	+	+	\dagger		+		CO	+		1	+	+		145			
			+	+		+	1	1	+	+		1	1	1	1	1	36.045		+	+	+		1	40.7	+	+	+			+	28.207	-	35.0	3
(4001119 titement	ත	+	+			1		1		+	+	+		1			68					+	0	001		+					29			
4)	(150mg/l) (67.5kg) /l)	1	1				1		1					1	1		30.78	1	1			+	1	48.433							39.995		39.7	3
<	50mg/l) (E			+	1		1	+	1	1	1	1		1	1		92	1			1			119	1		1				95			
000	5kg)														443.175		552.825		419.265			384		451.77	528.84	604.505			404.055	520.825	562.035		487.1	10
(SILIONOZ)										1					1425		1365		1155			1280	1	1110	1130	1595			1095	1255	1335			
200	Kg)														1900.21		1838.7		1644.39			1716		2295.48	2120.04	2137.56			2062.71	1871.65	2353.39		1994.0	10
000															6110		4540		4530			5720		5640	4530	5640			5590	4510	5590			
																	715.23							1229.954							943.04		962.7	3
F3() F3	(I/bm)																1766							3022							2240			
	3														311	88	405	129	363			300	112	407	468	379			369	415	421	93	304.3	14
Flore	(675m3)	01/07/2008	02/07/2008	03/07/2008	04/07/2008	05/07/2008	06/07/2008	07/07/2008	08/07/2008	09/07/2008	10/07/2008	11/07/2008	12/07/2008	13/07/2008	14/07/2008	15/07/2008	16/07/2008	17/07/2008	18/07/2008	19/07/2008	20/07/2008	21/07/2008	22/07/2008	23/07/2008	24/07/2008	25/07/2008	26/07/2008	27/07/2008	28/07/2008	29/07/2008	30/07/2008	31/07/2008	ge	u
	Date	01/4	02/1	03/	04/(05/4	1/90	07/4	/80	/60	10/	11/	12/	13/	14/	15/	16/	17/	18/	19/	20/	21/	22/	23/	24/	25/	26/	27/	28/	29/	30/	31/	Average	# Tests

DAWN MEATS PROCESS EFFLUENT ANALYSIS - IPPCL P0179-01 (By Concentration and By Mass)

Issued by: G Walsh Approved by: C Coakley

113

area	19.6		18.9	18.7	18.5		T		18.2	17.9	18.7	18.1	T		18.4	17.9	17.9		18.2			18.4		17.1	16.8	17.2			16.7		18.1 Totals	17
(<420C																	-															
8.5)	7.18			7.13	7.14						7.12	7.14			7.15	7.01	7.08		7.12			7.12			7.16	7.10			7.17		7.1	17
(1) (8.5) (<420)			28.63							1.5328							1.287							0.9238							8.1	_
		1	70	1		1				3.2			1				2.6			1	1	1		6.2								
			0.3272	+	1	1				1.1649							1.3811		1	+	1			0.3412							0.8	
			0.8	1	1		+	+	- 1	2.432				+			2.79		1	1				2.29								
(150mg/l) (67.5kg) (20mg/l)	+		40.9	1	+	+	+	+	+	40.715					1	-	32.175	1		+			1	5.215					1		29.8	*
. (67.	-		100			-	+	+		85 40				+	1	1	65 32	+	1	-	-	+		35 5								
		_	52				-	_	-	03	-						25							25		-				_	28.4	
(2001119 (47.25m) //) (9)		-	5 33.7425							57 27.303							5 38.3625							95 14.155							28	
(2001)			3 82.5														5 77.5														2	,
(150mg/l) (67.5kg) /l)			35.583							55.564							49.5							13.261							38.5	
(150mg/l)			87							116							100							89								
5kg)	607.725		629.86	664.625	61.325				556.335	601.145	610.725	437			621.16	509.425	643.5		84.15			549.84		292.04	151.235	633.08			482.48		478.6	1
) bmoor	1825	1	1540	1625	1115				1585	1255	1275	950			1465	1435	1300		1530			1580		1960	1015	980			1480			
(B)	666		2171.79	1705.53	323.4				2032.29	2102.81	1927.496	1941.2			2030.96	1625.9	2267.1		312.95			2014.92		1016.18	1025.12	1938			1561.54		1588.0	1
(2362kg)	3000		5310 21	4170 17	5880				5790 20	4390 21	4024 192	4220			4790 20	4580	4580		5690			5790 20		6820 10	6880 10	3000			4790 15		-	
(/000) (mg/l)	\vdash			4	58				57		40	42			47	45			56			57			99	30			47	_	622.6	
H350kg			383.233							773.106							915.255							418.988							62	
BOD BOD (4000mg/l) (1350kg)			937							1614							1849							2812								
133	333	132	439	409	55				351	469	479	460			424	462	355	495	55			348	149	459	149	646			326	124	339.0	
Flow (675)	01/09/2008	02/09/2008	03/09/2008	04/09/2008	05/09/2008	06/09/2008	07/09/2008	08/09/2008	09/09/2008	10/09/2008	11/09/2008	12/09/2008	13/09/2008	14/09/2008	15/09/2008	16/09/2008	17/09/2008	18/09/2008	19/09/2008	20/09/2008	21/09/2008	22/09/2008	23/09/2008	24/09/2008	25/09/2008	26/09/2008	27/09/2008	28/09/2008	29/09/2008	30/09/2008	Average	

																																	15.1 Totals	128	
(<42oC)	17.0	17.0	47.0	0.		15.2	7.0.	10.0	15.4	1 1 1	10.4		45.2	19.3	15.2	5.5	10.0	15.1		45.2	0.0	15.1	15.1		15.2				13.5	13.4	13.2	13.2	15.1	19	0
(1) 1 8.5) (<420	7.13	7.50	1 20	07.7	+	1 43	61.13	1.11	7.12	140	01.7	+	1 44	11.7	7 42	21.7	71.7	7.11		107	10.7	7.03	6.59	-	6.59			1	7.01	6.61	7.02	7.03	7.0	19	•
¢	8 76	5							10.4196	1	1	1			10 200	10.303		1	1				1.70424	1	1					12.525			10.4	5	
_	20	0				+			91.4		1		1		27	3/		+	1		1	1	7.89	1			1		1	25					
	28032	4							0.5563		1				1 04 12	7/16./		1	\dagger				1.1858	1	1		1			3.7224			3.2	2	
	-	+				1	1		4.88		1			1	7	15.93	1		1	1	1	1	5.49			1	1			7.43					
1 1111111	A 10 20 00	20.00	+			+			13.68	+	+	+		+	70	64.61				+		+	29.16			+			1	52.605			39.0	2	
	00	00	+		1	+			120	+			+		0	130		+					135	+		+		+		105					
	-	20.07	+	1			+		10.26					+		42.245		+					24.84	+		+	+	1		45.09			31.8	2	
5.2.3	1 00	83.0	1		+		+		06	1	1			+		85	+		+				115		+	1	+			06					
	(I fauce)	77.72	+	1			+		7.41	+	+	1		+		38.269				+			15.12			+	+			46.4427			25.0	2	
	(ii) (Buch is) (ii) (iii) (iii)	40	+	1	1	1			65	1		+	1	1		77				+			70	1		1				92.7					
		639.48	463.68	664.5			419.9	496.57	196.08		663.75			654.225		556.64	623.735	570.72			401.36	648.611	322.92		72.875				9.505	623.745	616.23	82.775	485.4	19	
		1460	096	1500		1	1235	1270	1720		1250			1525 6			1255	1230				1321	1495		1325				1280	1245	1230	1505			
	(2362kg) I)	1957.86	2067.24	1922.62			1968.6	2181.78	790.02		2017.8			2029.17		2117.22	1988	2255.04			1913.38	2273.33	1369.44		250.25				1969.075	2204.4	1888.77	233.75	1757.8	19	
	S.		4280	4340			5790	5580	6930		3800			4730		4260	4000	4860			5530	4630	6340		4550				4985 1	4400					
	-	982.434							274.056							1294.685							241.056							966.429			751.7	ĸ	
	(4000mg/l) (1350kg)	2243							2404							2605 12							1116							1929					
	(4000r		483	443			340	456		114	531			429	128	501	497	464			346	457	491	216	55				395			55	4.	22	
	(675m3)	4	4	4			3	4	3	1	ίς			4	1	ιΩ	4	4			6	4	4	2					3	5	5		374.4		
	Date (6	01/10/2008	02/10/2008	03/10/2008	04/10/2008	05/10/2008	06/10/2008	07/10/2008	08/10/2008	09/10/2008	10/10/2008	11/10/2008	12/10/2008	13/10/2008	14/10/2008	15/10/2008	16/10/2008	17/10/2008	18/10/2008	19/10/2008	20/10/2008	21/10/2008	22/10/2008	23/10/2008	24/10/2008	25/10/2008	26/10/2008	27/10/2008	28/10/2008	29/10/2008	30/10/2008	31/10/2008	Average	# Toots	6.61

		14.5	14.6	14.3		13.6	2	T	12.66	129	42.42	12.43	45.4	1.0		12.55	11.2	1 8	-	11 15	01.13		7	=	14.6	12.5	2.3	11.3		12 a Totals	16.3
(<420C		7.40	7.36	7 24	4	7 23	64.		7 13	7 46	0 0	01.7	1 4 2 2	2	+	7.21	7 22	7 10	2	7 4 7	1.	+	1 1 4	4/:	7 84	10.7	10.	7.73	+	7.3	5.7
		7	14.14		1					20 00 0		+		+	+		4 7022	L	-		1	+	+	+	2 046			1		20.3	20.3
_			35		-	+	+	+	+	400 E		+	+	+	-	+	10.2					+	+	+	0 0			+	+	-	
(F)			1.6847				+			27				1			4 4470	r ·	+	+					4 4046	0101.	1	+	+	4.4	4.
(l/gm			4 17 1			1		+	\dagger	L	3.25			1			0 40		+	+				+		4.00	+				
7.5kg) (20			43 228	244					+		48	1		+	+		27 57 57 5	04.07.0	1	+	+	+	1	1	2000	28.35	+		+	- 00	38.5
(150mg/l) (67.5kg) (20mg/l)			107	_	1		+			0	100		+	+		+	70				+	+	+	+	L	COL				-	
(15	-		40 008	0.300	+	1	+	+		1	24	1	1	+	1	+	000	11.986			1					3.375	1	+			12.6
(6)		+	7.0		+				+	1	20	+			+	+		97	+			+				12.5	1	+		-	
37.5kg) //)			20.00	47.47		1			1		59.52	1		1			-	20.745			1		1			12.015					29.1
(150mg/l) (67.5kg)			00	09	1	1					124						1	45								44.5					
(1) (675kg) (1		100000	362.805	303	599.94		610.695			350.4	573.6	602.4		568.645			67.999	299.65	440.255		537.24			219.48		136.35	101.25	53.55		-	401.6
(67				750	1485	1	1655 (+	1095	1195	1255		1055	+		1625		922		1210	1		1240		505	375	210		-	
(G)	+		2079.36	2145.24	2060.4		2132.82		+	1955.2	2256	2256		2182.95	+	1	2050	2092.94	2014.57		1793.76			621.27		926.1	855.9	448.8	1	-	1742.0
) (2362kg)	_			"	5100 2		5780 21			6110 1	4700	4700		4050 21		+			4370 20		4040 17			3510 6		3430	3170	1760		-	_
(g) mg/l)	1			1147.764 5	5.		2			9	1109.76 4	4		4(4	1065.371 4	4		4			3		561.87	3	1		-	971.2
(4000mg/l) (1350kg)	+	_		2841 114							2312 110					-		2311 106								2081 5					
(4000mg					4	6	6			0		0	2	6			0		1	2	4			7	1		0	2			8
(675m3)			361	442	404	179	369			320	92	480	472	539			410	331	461	72	444			177	171	367	270	255			330.8
_	01/11/2008	02/11/2008	03/11/2008	04/11/2008	05/11/2008	06/11/2008	07/11/2008	08/11/2008	09/11/2008	10/11/2008	11/11/2008	12/11/2008	13/11/2008	14/11/2008	15/11/2008	16/11/2008	17/11/2008	18/11/2008	19/11/2008	20/11/2008	21/11/2008	22/11/2008	23/11/2008	24/11/2008	25/11/2008	26/11/2008	27/11/2008	28/11/2008	29/11/2008	30/11/2008	

																																Total	11.7 IOTAIS		
*	(<42oC)	11.2	12.2	13.5		12.2						10.8	4.7		42 5	10.0	6.70	9.79	13.8													1	11.7	01	0
j.	(150mg (101.zkg pm (5.0 temp //) (<420	7.70	7.72	7.64		7.73		+	+		-	7.74	7.44	+	1	1.00	07.7	7.20	7.20	+						+				1		- ;	7.5	10	0
OFG	101.ZKG F			1.4178														3.12															2.3	2	0
OFG	(150mg (/ /l))			13.9								1	1				1	8./									T	T			T				
	(13,5kg (0.4019										1				1.924		1	1						Ī			Ī			1.2	2	0
				3.94											1	T		4.81						1	1	T			1	1					
	Det (7.5kg) (20n			10.2								47.52			+	+		45								+							33.2	က	0
	N Det (150mg/l) (67.5kg) (20mg/l)			100								120						105	1				1							1	1				
				1.428								14.85		1		1	1	12.4					1							+	+		9.6	c	0
<u>а</u>	(200mg (47.25k //) q)			14								37.5			+			31		1		1	1	1	1			1	1	1	1				
	A A (20 (2150mg/l) (67.5kg) /l)			5.1612								47.52			1			28.4															27.0	3	0
	50mg/l) (1.6		50.6								120						71																	
	Skeil	25	20.102	162.792		148.295						564.3	366.3			540.4	558.76	652	412											1			363.7	10	0
	(2000mg/ SS	075	_	1596	_	665						1425	925			1400	1145	1630	1030																
r 2008 SS	1	1.7	10.0201	672.18		892						2051.28	1421.64			2123	2220.4	2120	2340														1567.9	10	0
ecembe	0	1	4930	2920		4000		-		-		5180	3590			2500	4550	5300	5850																
Month: December 2008			+	197 472														552.4															374.9	2	0
Mo	B00	(4000mg/l)	+	1936		-	+		-		-							1381																	
	BOD		_			2 2			-		0	3	20			0	3		0	2													0	2	0
	Flow	(e/oms)	207	335	100	201	77		199	109	419	468	396			386	468	488	400														299.0	15	
		-	01/12/2008	02/12/2008	03/12/2000	04/12/2000	05/12/2008	00/12/2008	08/12/2008	00/12/2000	10/12/2008	11/12/2008	12/12/2008	13/12/2008	14/12/2008	15/12/2008	16/12/2008	17/12/2008	18/12/2008	19/12/2008	20/12/2008	21/12/2008	22/12/2008	23/12/2008	24/12/2008	25/12/2008	26/12/2008	27/12/2008	28/12/2008	29/12/2008	30/12/2008	31/12/2008	Average	# Tests	NCR