### ICI DULUX PAINTS IRELAND

### ANNUAL ENVIRONMENTAL REPORT 2008

**REGISTRATION No. P0218-01** 

### ICI DULUX PAINTS IRELAND LTD.

### **ANNUAL ENVIRONMENTAL REPORT 2008**

### **CONTENTS OF REPORT**

### **SECTION 2.1**

2.1.1

Introduction

| 2.1.2                                     | Site Description                                                                                                  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 2.1.3                                     | Safety, Health and Environment Policy                                                                             |
| 2.1.4                                     | Organisation Structure                                                                                            |
| 2.1.5                                     | Local Environmental Conditions                                                                                    |
| 2.1.6                                     | Some Dimensions                                                                                                   |
| SECTION 2.2                               | 2                                                                                                                 |
| 2.2.1                                     | Emissions Sewer                                                                                                   |
| 2.2.2                                     | Emissions to Water (cooling water)                                                                                |
| 2.2.3                                     | Emissions to Water (surface water)                                                                                |
| 2.2.4                                     | Emissions to Air (steam boiler)                                                                                   |
| 2.2.5                                     | VOC/Fugitive Emissions                                                                                            |
| 2.2.6                                     | Waste Management and Summary Data on Wastes Arising                                                               |
| 2.2.7                                     | Energy and Water Consumption                                                                                      |
| 2.2.8                                     | Environmental Incidents and Complaints                                                                            |
| 2.2.9                                     | AER Summary of Emissions                                                                                          |
| SECTION 2.                                | 3                                                                                                                 |
| 2.3.1                                     | Management of the Activity                                                                                        |
| 2.3.2                                     | Environmental Management Programme Report                                                                         |
| 2.3.3                                     | Environmental Objectives and Targets 2009                                                                         |
| 2.3.4                                     | Environmental Management Programme 2009                                                                           |
| 2.3.5                                     | Pollution Emission Register (PER)                                                                                 |
| 2.3.6                                     | Spending on Environmental Protection                                                                              |
| SECTION 2.4                               | 4                                                                                                                 |
| 2.4.1<br>2.4.2<br>2.4.3<br>2.4.4<br>2.4.5 | Noise Survey Bund Testing Inspection for Leaks on Flanges and Pipelines Residual Management Plan Toxicity Testing |
|                                           |                                                                                                                   |

### **ANNUAL ENVIRONMENTAL REPORT 2008**

### **2.1.1 INTRODUCTION**

Registration No: P0218-01

**Company Name: Dulux Paints Ireland** 

**Site Location:** Shandon Works

Common's Road

P.O. Box 45

Cork

**Telephone:** 021 – 4220222 **Fax:** 021 – 4220205

National Grid Ref: 1670E, 7400N

**Contact Name:** John O'Connell

**Adrian Greene** 

### ANNUAL ENVIRONMENT REPORT

### 2.1.2 <u>SITE DESCRIPTION</u>

**DULUX PAINTS IRELAND** is the largest paint manufacturer in Ireland. Founded in 1885 the Company operates a major manufacturing plant at the Commons Road site and with warehouses in Cork and Dublin it employs 163 people.

In January 2008 ICI Paints (of which Dulux Paints is a subsidiary) was taken over by AkzoNobel and the combined businesses mean that AkzoNobel is the largest paint manufacturer in the world.

The working hours are as follows for the plant:

07.30 hrs - 13.00 hrs and 13.30 hrs – 18.00 hrs (Mon. – Thurs.) 16.00 hrs finish on Friday.

The Company manufactures and markets a range of decorative paints, high performance coatings for trade and general industrial users, a range of woodcare and metalcare products and some other ancillary products.

The Cork site comprises Head Office, Factory, Warehouses and Laboratory on a site of 13. 879 acres.

The Company also manufactures paint for export to supplement the UK business when required.

Dulux Paints Ireland has its own technical resources and in addition product development is based primarily on technological advancement as part of AkzoNobel.

The Company manufactures high quality products and has a number of formal quality system approvals. Refer to attachments.

### **COMPANY ACHIEVEMENTS LADDER**

| 2002/03/04 | IIID                | IITD National Training Awards                        |
|------------|---------------------|------------------------------------------------------|
| 2005       | IIID                | National Training Awards/Learner of the Year         |
| 2006       | IIID                | National Training Awards 2 <sup>nd</sup> Consecutive |
|            |                     | Year/Outstanding Achievement; in Learner of the Year |
|            |                     | Category                                             |
| 2006       | Quality<br>Approved | EIQA Quality Awards – Winner of Manufacturing        |
| 2007       | III                 | National Training Awards 3rd Consecutive             |
|            |                     | Year/Outstanding Achievement; in Learner of the Year |
|            |                     | Category                                             |
| 2008       | Quality<br>Approved | EIQA Quality Awards -                                |
| 2007       | (5)                 | Excellence Through People Platinum Accreditation     |
| 2008       | IIID                | National Training Awards 4th Consecutive Year        |

### SECTION 1

### GENERAL STATEMENT OF POLICY

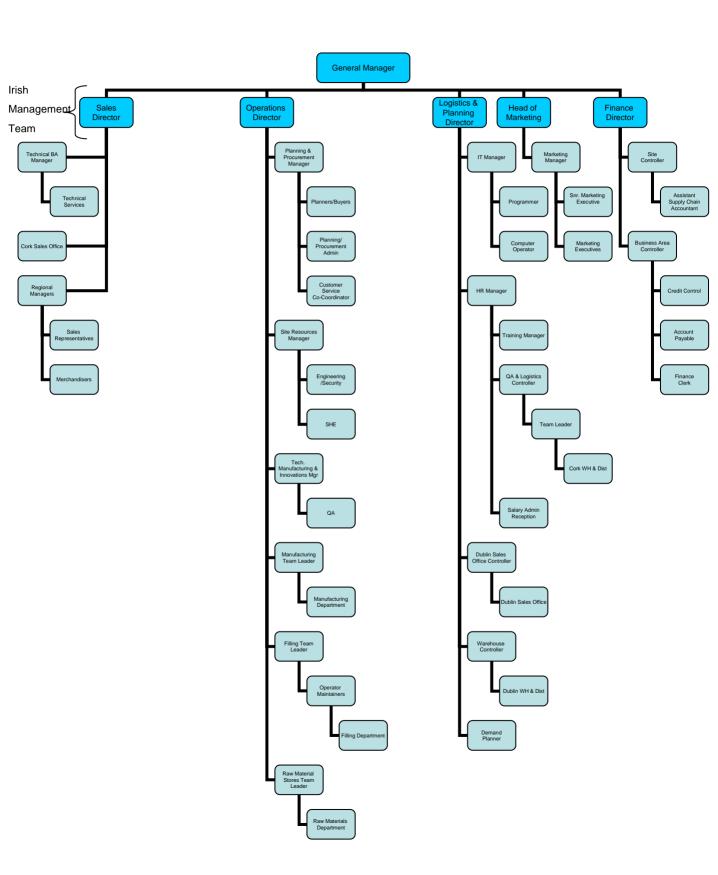
It is the policy of DULUX Paints Ireland, part of the ICI Paints international business at a wholly owned subsidiary of Imperial Chemical Industries plc ("ICI") to comply fully we the Safety, Health and Welfare at Work Act, 2007 and the Safety, Health and Welfare at Work (General Applications) Regulations 1993 and as amended Regulations 2001 to ensure so far as is reasonably practicable the safety, health and welfare of all employees at our places of work. Also in accordance with the ICI policy, subsidiaries are required to establish and to implement safety, health and environment policies, which are consistent with those that apply throughout the ICI Group worldwide.

We commit to provide such information, training and supervision as may be required for this purpose. This safety statement is a plan to minimise the risk of injury and ill health at our workplace.

It is also the policy of DULUX Paints Ireland to protect, as far as reasonably practicable, persons not employed by this company such as neighbours, contractors and visitors who may be affected by our activities. The company is committed to meeting the relevant environmental regulatory standards set by the Environmental Protection Agency (EPA) and has adopted environmental objectives set by the ICI Group.

In pursuance of the general statement of safety policy the company will provide and maintain a safe place of work, safe plant and machinery, safe systems of work and competent employees. We shall carry out a detailed hazard identification exercise, risk assessment and implement control measures as required. Resources shall be made available as necessary. The Irish Management Team (IMT) has overall responsibility to implement the safety policy and to provide adequate resources on an ongoing basis to implement the safety management system.

All employees have the responsibility to co-operate with management to achieve a healthy and safe workplace and to take reasonable care of themselves and others.


It is the policy of this company to consult all staff and employees on matters of health and safety. Employees are hereby notified of the company policy and are encouraged to comply with their duties under the 2007 Act to notify the company management of identified hazards in the workplace.

The allocation of duties for safety matters and particular arrangements to implement the policy are set out in this Company Safety Statement. This policy will be kept up to date, to ensure this, the policy and the way in which it has operated will be reviewed annually.

Signed and the Date 4/4/08

Mr. David Hughes Operations Director, Irish Management Team.

### **DULUX PAINTS ORGANISATION CHART**



### 2.1.5 LOCAL ENVIRONMENTAL CONDITIONS

The Company has no record of complaints from our residential neighbours regarding noise, odour or emissions to air, sewer or water.

Noise and odour from our activities are not significant and are not detectable or measurable at our site boundary.

Air pollution in Cork City is monitored by Cork City Council and we submit a summary of their SO<sup>2</sup> monitored emissions for 1988 – 2007. We have a particular interest in the results from one monitoring station at Blackpool, which is a densely populated area and adjacent to our site. There is a downward trend in SO<sup>2</sup> emissions and our contribution to this was the conversion from heavy fuel oil to natural gas (1997) for our main steam boiler.

### Attachments:

Details of SO<sup>2</sup> emissions monitored by Cork City Council 1988 – 2007.

(2008 report not available at time of printing)

### 3. Sulphur Dioxide

Most fuels contain small amounts of sulphur as an impurity and when burned sulphur dioxide is produced. It is acidic and irritating when breathed.

### Results

Processed data based for the old acidimetric procedure for the year 2006-2007 (1April-31 March) is presented in Table 1 below. Previous years' results are in brackets.

### Table 1

Network (ug/m3) 2006-2007 (Previous Years in brackets)

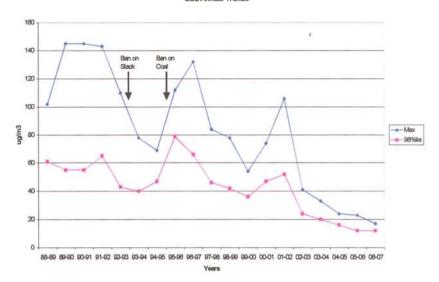
| Max         | 17 (23) (24) |
|-------------|--------------|
| Values >250 | 0 (0) (0)    |
| 98% ile     | 12 (12) (16) |
| Median      | 5 (7) (8)    |
| Mean        | 6 (7) (8)    |

### **Standards**

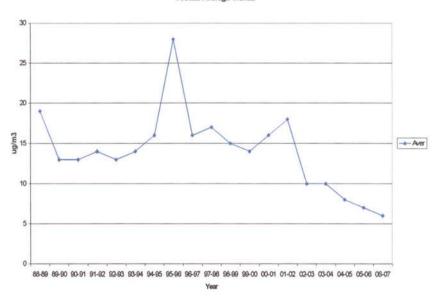
### EU standards require:-

- 1. 250 ug/m3 not to be exceeded on 4 or more consecutive days when suspended particulates are greater than 150 ug/m3 or 350 ug/m3 when s.p are less than 150.
- 2. 98 %ile not to exceed 250 ug/m3 when s.p .150 or 350 if s.p <150.
- 3. Annual median not to exceed 80 ug/m3 when s.p >40 or 120 if s.p <40.
- 4. Winter median not to exceed 130 ug/m3 when s.p>60 or 180 if s.p <60.

Monitoring indicates that the air in Cork is compliant with this old Standard. The WHO guideline of max. 125 ug/m3 for any 24 hour value is also compliant.


### Discussion

The maxima and 98%ile figures for the year are substantially down on previous years (similar to the S.P results).


The variation over the years is shown in Fig 1 below. It shows how a rise in levels was experienced on the change over from coal to solid fuels in 1995 and how these levels have now declined to those of former years.

This method can best be described as approximate only at the low levels being encountered in Cork.

### SO2 Annual Trends



### Annual Average Trends



### New (Fluorescent) Method for SO2 and Standard

A new standard from the EU, transposed into Irish Regs (271 of 2002) has a requirement for hourly samples by the fluorescent method. The old acidimetric method measures 24 hour samples only. A new automatic method based on fluorescence is in operation at Old Station Road since 23/04/99.

### Results for 2007 (previous years in brackets)

- 1. The maximum value recorded for the one hour sample was 57 (33) (78) (57) ug/m3.
- 2. The max 24 hour value was 24 (19) (41) (21) ug/m3
- 3. The average one hour value was 4.2 (4.3) (7.1) (4.0) (5.0) ug/m3.

### Comparison with Standards

The new EU standards require:-

- 1. 350 ug/m3 not to be exceeded more than 24 times a calendar year for the hourly readings. The max recorded was 33 ug/m3 so this is in compliance.
- 2. 125 ug/m3 not to be exceeded more than 3 times a calendar year for the daily readings. The max recorded was 19 ug/m3 so this is in compliance.

### Discussion

The results are well within the limits required by the EU directive.

The monitor does not function very accurately at the low concentrations found in Cork. There is some drift and inconsistency.

### Difference between the Methods

It was always realised that the old acidimetric method at low levels was inaccurate: a titration figure of 0.1 ml was about equivalent to 7 ug/m3 and there were other factors that tended to make the results approximate only. The length of the intake PVC tubing and its age tended to increase the potential of acid leachate from the tube itself causing a positive interference. A negative interference could be caused by ammonia sources such as toilets, animals etc. Errors are also likely from drift in the pH at 4.5 before and after the sample exposure.

Nevertheless the old acidimetric method begun in the 1950's and intended to provide a widespread coverage of SO2 levels was useful in its time. The results are more accurate above 100 ug/m3 at which point the guide and maximum levels in the legislation become more pertinent.

### 2.1.6 SOME DIMENSIONS

| <b>Employment</b> | 153 persons                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <u>Markets</u>    | Republic of Ireland and Export                                                                                                  |
| <b>Brands</b>     | Dulux, Uno, Valspar, Glidden,<br>Sikkens, International, Cuprinol, Hammerite,<br>Polycell and other Sundry labels               |
| Main Sites        |                                                                                                                                 |
| Cork:             | Factory, Warehouse, Laboratory,<br>Head Office, and Trade Centre                                                                |
| Dublin:           | Unit J, South City Business Park, Tallaght:<br>Warehouse, Area Offices and Trade<br>Centre<br>Sth. Frederick St:<br>TradeCentre |
|                   |                                                                                                                                 |

### 2.2.1 DATA / SUMMARY INFORMATION

### **Emissions to Sewer**

### Schedules 3 (i) and 3 (ii)

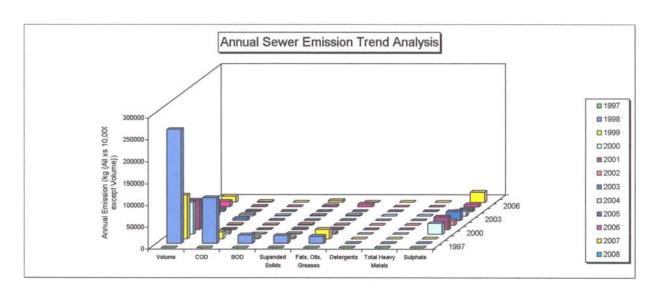
### **Emission Point SE1**

Since operating our Trade Effluent Buffer Tank in 1998 we have continued to reduce the quantity of effluent discharged to sewer: However, in recent years there has been a levelling off with small variations in the amounts discharged. See below for details.

1998 - **260 M³**1999 - 101 M³
2000 - 73 M³
2001 - 68 M³
2002 - 27 M³
2003 - 40 M³
2004 - 30 M³
2005 - 9 M³
2006 - 12 M³
2007 - 14 M³

We were fully compliant with all the discharge parameters outlined in schedules 3 (i) and 3 (ii). Trade effluent analysis report attached in Appendix 1.

### **Attachments**


- Emission to Sewer Annual Report including Trend Analysis for 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008.
- Emissions to Sewer 2008 Summary of in-house monitoring.

### Sewer Annual Report

### Emissions to Sewer

| Parameter           | Mass      |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|                     | Emission  |  |
|                     | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      | 2007      | 2008      |  |
|                     | kg per yr |  |
| Volume              | 0         | 260700    | 100500    | 73200     | 67800     | 26300     | 39700     | 29600     | 5752      | 12230     | 13910     | 15018     |  |
| COD                 | 0         | 10.5      | 1.6       | 0.5       | 0.1       | 0.13      | 0.48      | 0.33      | 0.11      | 0.10      | 0.14      | 0.08      |  |
| BOD                 | 0         | 1.9       | 0.3       | 0.1       | 0.0       | 0.04      | 0.08      | 0.06      | 0.01      | 0.02      | 0.04      | 0.03      |  |
| Supended Solids     | 0         | 1.8       | 0.3       | 0.1       | 0.1       | 0.22      | 0.08      | 0.19      | 0.02      | 0.24      | 0.41      | 0.05      |  |
| Fats, Oils, Greases | 0         | 1.6       | 2.2       | 0.3       | 0.1       | 0.05      | 0.08      | 0.24      | 0.01      | 0.62      | 0.06      | 0.07      |  |
| Detergents          | 0         | < 1       | < 1       | < 1       | <1        | <1        | 0.7       | 0.08      | <0.2      | 0.35      | 0.05      | 0.05      |  |
| Total Heavy Metals  | 0         | < 1       | < 1       | < 1       | <1        | <1        | <1        | <1        | <1        | 1.12      | 1.58      | <1        |  |
| Sulphate            | 0         | < 1       | < 1       | 2.5       | 2.9       | 0.98      | 2.10      | 1.15      | 0.41      | 0.58      | 2.35      | 0.90      |  |
| pH (Ave)            | -         |           | -         | -         | 8.2 units | 8 units   | 8.0       | 7.9       | 8.0       | 7.4       | 7.9       | 7.5       |  |
| Temperature (Ave)   | -         |           |           |           | 13.2 °C   |           |           |           | 0.0       | 0.0       | 0.0       | 0.0       |  |
| Organic Solvents    | -         |           | -         | -         | -         | -         | -         | -         | 0.0       | 0.0       | 0.0       | 0.0       |  |
| Micro Toxicity (TU) | -         | < 2       | < 2       | < 2       | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        |  |

Note: No data for 1997



| Parameter           | Compliance |
|---------------------|------------|
|                     | 2008       |
|                     | %          |
| Volume              | 100%       |
| COD                 | 100%       |
| BOD                 | 100%       |
| Supended Solids     | 100%       |
| Fats, Oils, Greases | 100%       |
| Detergents          | 100%       |
| Total Heavy Metals  | 100%       |
| Sulphate            | 100%       |
| pH (Ave)            | 100%       |
| Temperature (Ave)   | 100%       |
| Organic Solvents    | 100%       |
| Micro Toxicity (TU) | 100%       |

### Details of non compliance

| Date | Non-compliance | Cause | Corrective action |
|------|----------------|-------|-------------------|
|      | None           |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |

### **EMISSIONS TO SEWER 2008**

TRADE EFFLUENT BUFFER TANK

EMISSION POINT No. SE1

MONITORING POINT: SUMP No. 20

SCHEDULE 3(i) & 3(ii)

| YEAR | NUMBER        | QUANTITY      | ISCHARG       | AVG   | р   | Н    | CC  | DD  | TEM  | P°C  |
|------|---------------|---------------|---------------|-------|-----|------|-----|-----|------|------|
|      | OF<br>BATCHES | SCHARGE<br>M³ | TIME<br>hours | M³/HR | MAX | AVG  | MAX | AVG | MAX  | AVG  |
| 2008 | 6             | 15            | 23.25         | 0.65  | 7.8 | 7.47 | 9   | 5.4 | 16.3 | 12.2 |

### 2.2.2 <u>EMISSIONS TO WATER (COOLING WATER)</u>

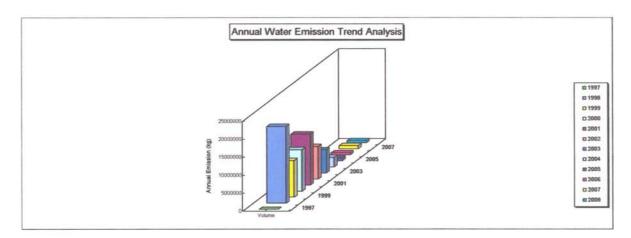
### Schedule 2 (i)

### **Emission Point SW2**

There is a history of reduction over the past number of years and this is due to re-organisation of our manufacturing process which resulted in the closing of our solvent based manufacturing building and a large reduction in the manufacture of solvent based paints. However, an increase in 2007 was due to an unusually large order which required a manufacturing process that used cooling water.

We monitor the emissions weekly and the summary data recorded. We discharged 601  $M^3$  cooling water in 2008 which is down on 2007 figure and indicates that we are in full compliance with the discharge parameter  $100 \, M^3$  / day and with the temperature.

### Attachment:


Water Annual Report and Trend Analysis for 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008.

### Water Annual Report

Emissions to Water

| Parameter   | Mass      |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|             | Emission  |
|             | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      | 2007      | 200       |
|             | kg per yr |
| Temperature |           | -         | -         | -         | -         | -         | -         |           | -         |           |           | -         |
| Volume      | 0         | 21428000  | 10184000  | 11568000  | 14238000  | 9074000   | 6436000   | 2655000   | 749000    | 612000    | 932000    | 80100     |

Note: No data for 1997 Cooling water is the main source



| Parameter                      | Compliance |
|--------------------------------|------------|
| Parameter  Temperature  Volume | 2008       |
|                                | %          |
| Temperature                    | 100%       |
| Volume                         | 100%       |
|                                | - 10010    |

### Details of non compliance

| Date | Non-compliance | Cause | Corrective action |
|------|----------------|-------|-------------------|
|      | None           |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |

This is the amount of water used for cooling and then discarded to the river

### 2.2.3 <u>EMISSIONS TO WATER (SURFACE WATER)</u>

Schedule 5(i)

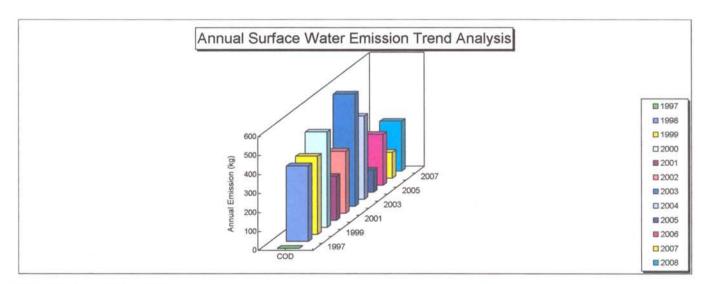
**Emission Point SW1** 

We monitored weekly for emissions at SW1 as they were available to us - refer to Surface Water Discharge monitoring sheet attached.

### **Attachments:**

Surface Water Annual Report and Trend Analysis 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008.

Surface Water Discharge Monitoring - Weekly Data.


### Surface Water Annual Report

Emissions to Surface Water

| Parameter        |                           | Mass      |
|------------------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                  |                           | Emission  |
|                  |                           | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      | 2007      | 2008      |
|                  |                           | kg per yr |
| pН               |                           |           | -         |           | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Ave COD          | (mg/m3)                   | 0         | 49        | 53        | 65        | 35        | 31        | 90        | 58        | 17        | 33        | 19        | 29        |
| COD              | (kg)                      | 0         | 397       | 411       | 502       | 230       | 326       | 589       | 438       | 114       | 267       | 136       | 263       |
| Visual,<br>Odour | Colour and<br>Examination | •         | -         | •         | *         | •         | *         | •         |           | •         | -         | -         | (€)       |
| Volume           |                           | 0         | 8165      | 7753      | 7732      | 6609      | 10405     | 6548      | 7550      | 6691      | 8104      | 7151      | 9065      |
| Area (m2)        | 6765                      |           |           |           |           |           |           |           |           |           |           |           |           |
| Rainfall (m)     |                           | 0         | 1.207     | 1.146     | 1.143     | 0.977     | 1.538     | 0.968     | 1.116     | 0.989     | 1.198     | 1.057     | 1.34      |

Calculation based on area covered by outflow SW1and average rainfall

Note: No data for 1997



| Parameter        |                           | Compliance |
|------------------|---------------------------|------------|
|                  |                           | 2008       |
|                  |                           | %          |
| pН               |                           | 100%       |
| Ave COD          | (mg/m3)                   |            |
| COD              |                           | 100%       |
| Visual,<br>Odour | Colour and<br>Examination | 100%       |

### Details of non compliance

| Date | Non-compliance | Cause | Corrective action |
|------|----------------|-------|-------------------|
|      | None           |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |
|      |                |       |                   |

| MONTH    | DATE                 | PH   | COD | TEMP °C | COLOUR          | ODOUR | COMMENTS           |
|----------|----------------------|------|-----|---------|-----------------|-------|--------------------|
| JANUARY  | 04.04.00             |      |     |         |                 |       |                    |
|          | 04.01.08             |      |     | _       |                 |       | river above outlet |
|          | 11.01.08             |      |     |         |                 |       | river above outle  |
|          | 18.01.08             |      |     |         |                 |       | river above outle  |
|          | 25.01.08             |      |     |         |                 |       | river above outlet |
| FEBRUARY | 01.02.08             |      |     |         |                 |       | no flow            |
|          | 08.02.08             |      |     |         |                 |       | no flow            |
|          | 15.02.08             | 8.2  | 37  | 10.3    | CLEAR           | NONE  |                    |
|          | 22.02.08             |      |     |         |                 |       | no flow            |
|          | 29.02.08             |      |     |         |                 |       | no flow            |
| MARCH    | 07.03.08             |      |     |         |                 |       | no flow            |
| WARCH    | 14.03.08             |      |     |         |                 |       | no flow            |
|          | 21.03.08             | 7.83 | 25  | 10.2    | CLEAR           | NONE  | 110 HOV            |
|          | 28.03.08             | 7.00 | 20  | 10.2    | OLLAN           | HONE  | no flow            |
|          |                      |      |     |         |                 |       |                    |
|          | 0.10100              |      |     |         |                 |       |                    |
| APRIL    | 04.04.08             |      |     |         |                 |       | no flow            |
|          | 11.04.08             |      |     | _       |                 |       | Hols               |
|          | 18.04.08             |      |     |         |                 |       | Hols               |
|          | 25.04.08             |      |     |         |                 |       | no flow            |
|          |                      |      |     |         |                 |       |                    |
| MAY      | 02.05.08             |      |     |         |                 |       | no flow            |
|          | 09.05.08             |      |     |         |                 |       | no flow            |
|          | 16.05.08             |      |     |         |                 |       | river above outle  |
|          | 27.05.08             | 8.12 | 29  | 15.5    | CLEAR           | NONE  | no flow            |
|          | 30.05.08             |      |     |         |                 |       | no flow            |
| JUNE     | 06.06.08             |      |     | -       |                 |       | no flow            |
| JONE     | 13.06.08             |      |     |         |                 |       | no flow            |
|          | 20.06.08             |      |     |         |                 |       | no flow            |
|          | 27.06.08             |      |     |         |                 |       | no flow            |
|          | 27.00.00             |      |     |         |                 |       | TIO HOW            |
|          |                      |      |     |         |                 |       |                    |
| JULY     | 04.07.08             |      |     |         |                 |       | no flow            |
|          | 11.07.08             |      |     | 4       |                 |       | no flow            |
|          | 16.07.08             | 8.23 | 41  | 17.2    | Slightly cloudy | none  |                    |
|          | 25.07.08             |      |     |         |                 |       | no flow            |
|          |                      |      |     |         |                 |       |                    |
| AUGUST   | 01.08.08             |      |     |         |                 |       | river above outle  |
|          | 08.08.08             |      |     |         |                 |       | Hols               |
|          | 15.08.08             |      |     |         |                 |       | no flow            |
|          | 22.08.08             | 7.77 | 31  | 15.7    | clear           | none  |                    |
|          | 29.08.08             |      |     |         |                 |       | no flow            |
| SEPT.    | 05.09.08             |      |     | -       |                 |       | river above outle  |
| OLI I.   | 12.09.08             |      |     |         |                 |       | hols               |
|          | 19.09.08             |      |     |         |                 |       | no flow            |
|          | 26.09.08             |      |     |         |                 |       | no flow            |
|          |                      |      |     |         |                 |       |                    |
| OOTOBER  | 00.10.00             | 6.45 | -   | 11=     |                 |       |                    |
| OCTOBER  | 03.10.08             | 8.12 | 26  | 14.7    | clear           | none  |                    |
|          | 10.10.08             |      | -   | -       |                 |       | no flow            |
|          | 17.10.08             |      |     | +       |                 |       | no flow            |
|          | 24.10.08<br>31.10.08 |      |     | -       |                 |       | no flow            |
|          | 31.10.00             |      |     |         |                 |       | 110 HOW            |
| NOVEMBER | 07.11.08             | 7.42 | 17  | 11.4    | clear           | none  |                    |
|          | 14.11.08             |      |     |         | l l             |       | no flow            |
|          | 21.11.08             |      |     |         |                 |       | no flow            |
|          | 28.11.08             |      |     |         |                 |       | river above outle  |
|          | -                    |      |     | -       |                 |       |                    |
| DECEMBED | 05.12.08             |      |     |         |                 |       | no flow            |
| DECEMBER |                      |      |     |         |                 |       | no flow            |
| DECEMBER | 12.12.08.1           |      |     |         |                 |       | 110 11011          |
| DECEMBER | 12.12.08             |      |     |         |                 |       | no flow            |
| DECEMBER | 19.12.08             |      |     |         |                 |       | no flow            |

### 2.2.4 EMISSIONS TO AIR

| a . |       | 4     | / • N |
|-----|-------|-------|-------|
| Sch | edule | - 1 4 | 1     |
| ou  | uuic  |       | 111   |

**Emission Point No. V11** 

This schedule refers to emissions from our main steam boiler stack.

### **Attachment:**

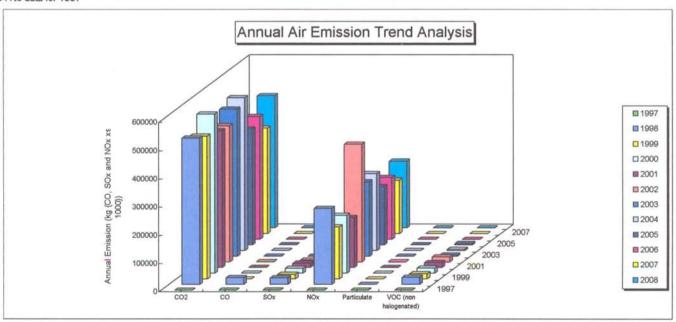
• Air Emissions Annual Report and Trend Analysis 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008.

.

### Air Emissions Annual Report

Annual Test Figures for Combustion Plant Vent A11

Test: 22/02/2008


| Material    | High Fire | Mid Fire | Low Fire | Average |
|-------------|-----------|----------|----------|---------|
|             | mg/m3     | mg/m3    | mg/m3    | mg/m3   |
| CO2         | 7.7%      | 8.6%     | 10.1%    | 8.8%    |
| CO2<br>O2   | 8.1%      | 5.7%     | 3.7%     | 5.8%    |
| CO          | 0         | 0        | 0        | 0.0     |
| SOx         | 0         | 0        | 0        | 0.0     |
| NOx         | 130       | 120      | 132      | 127.3   |
| Particulate | 0         | 0        | 0        | 0       |
| Smoke       | OK        | OK       | OK       | OK      |

### Annual Gas Usage

Annual Emissions Report

| Material              | Mass      |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                       | Emission  |
|                       | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      | 2007      | 2008      |
|                       | kg per yr |
| CH4 Usage m3          | 0         | 283045    | 275528    | 307327    | 264502    | 262668    | 283934    | 294851    | 222841    | 236877    | 203349    | 254811    |
| CH4 Usage kg          | 0         | 188696.67 | 183685.33 | 204884.67 | 176334.67 | 175112    | 189289.33 | 196567.33 | 148560.67 | 157918    | 135566    | 169874    |
| CO2                   | 0         | 518915.8  | 505134.7  | 563432.8  | 484920.3  | 481558.0  | 520545.7  | 540560.2  | 408541.8  | 434274.5  | 372806.5  | 467153.5  |
| CO                    | 0.0       | 24.2      | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |
| SOx                   | 0.0       | 22.9      | 15.0      | 16.7      | 14.4      | 6.2       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |
| NOx                   | 0.0       | 269.9     | 184.0     | 205.2     | 176.6     | 416.8     | 263.0     | 273.2     | 206.4     | 219.4     | 188.4     | 236.1     |
| Particulate           | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| VOC (non halogenated) | 0         | 25253.0   | 17533.9   | 17533.9   | 17434.1   | 17778.4   | 4707.0    | 4718.0    | 4235.0    | 0.0       | 0.0       | 0.0       |
| Smoke                 | OK        |           |           |           |           |
|                       | -         |           |           |           |           |           |           |           |           |           |           |           |

Note: No data for 1997



### 2.2.5 <u>VOC EMISSIONS - FUGITIVE EMISSIONS</u>

### Condition 11.2 of our Licence Reg. No. 218

Releases to air have been calculated by a range of recognised techniques. Measurements have been conducted using static diffusion tubes, pumped absorption tubes and a portable Autofim FID.

Emissions are calculated using US EPA AP42 techniques to give fugitive emissions from:

- \* Buildings with likely fugitive emissions
- \* Filling losses from external bulk storage tanks
- \* Filling losses from external mixing tanks

### **Attachments**

The five pages attached includes the VOC Emission Summary regarding fugitive emissions.

| Page 1: * | Fugitive emissions | from buildings/areas | with likely fugitive |
|-----------|--------------------|----------------------|----------------------|
|-----------|--------------------|----------------------|----------------------|

emissions

\* Extracted vent emissions

Page 2: \* VOC data

Page 3: \* Tank Emissions Calculator for bulk storage tanks and

external mixing tanks

Page 4: \* VOC Emission Summary – Total

Page 5: \* Vapour Pressure Chart Finalan D40 which is similar to

White Spirit.

### **NOTE**

Building 23 has been demolished but has been left in the Emission Calculator page for reference.

# **Fugitive Emission Calculator**

Most process plant vents direct into building, emissions calculated using internal concentration measurement and assumed building ventilation rate.

2008

| Building<br>Number                              | Activity (Note 1, Note 2)                                                                                                                                                                        | Building<br>Volume   | MEK                                   | TOLUENE XYLENE                              | XYLENE  | EXXSOL D40            |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|---------------------------------------------|---------|-----------------------|
|                                                 |                                                                                                                                                                                                  | m3                   | kg/year                               | kg/year                                     | kg/year | kg/year               |
|                                                 | UF recovery plant                                                                                                                                                                                | None, no vo          | None, no volatiles in use in building | in building                                 |         |                       |
| 13, 1st floor                                   | QC lab & tinting rig (emulsion) + emulsion portable mixing                                                                                                                                       | 1680                 |                                       | 0.0 0.0                                     | 0.0     | 0.0                   |
| 16, 1st floor<br>16, top floor<br>16, gnd floor | Emulsion & solvent-based processing<br>Emulsion & solvent-based processing, bulk tanks, small additions roon<br>Filling area - emulsion & solvent-based                                          | 619<br>1005<br>900   | ω                                     | 0.0 0.0<br>34.1 51.4<br>0.0 45.5            | 0.0     | 0.0<br>136.7<br>239.1 |
|                                                 | Packaging hall<br>Water-based dispersion area                                                                                                                                                    | 3395<br>None, no vo  | latiles in u                          | 0.0 171.6<br>se in building                 | 85.3    | 901.8                 |
| 23, gnd floor<br>23, 1st floor<br>23, top floor | Ballmills & small buffer stock of 200 litre drums<br>Ballmills & solvent-based portables, tinting rig (solvent-based), beadmi<br>Ballmills & high speed Torrances, solvent-based delivery meters | 1135<br>1107<br>1460 |                                       | 0.0 0.0 0.0 0.0                             | 0.0     | 0.0                   |
|                                                 | Caustic cleaning area                                                                                                                                                                            | None, no vo          | None, no volatiles in use in building | in building                                 |         |                       |
|                                                 | Solvent still                                                                                                                                                                                    | 93                   |                                       | 0.0 0.0                                     | 0.0     | 0.0                   |
|                                                 | Enclosed tank farm (4 tanks - 1white spirit, 3 latex)                                                                                                                                            | None, external vents | nal vents                             |                                             |         |                       |
|                                                 |                                                                                                                                                                                                  |                      | 84.1                                  | 1 268.5                                     | 108.0   | 1277.6                |
|                                                 | These are the areas with likely fugitive emissions All are highlighted on site map Based upon US EPA AP42 Building Bagging Method Air exchange rate Annual operating hours                       | 3000                 | 5 Room volumes<br>3000 Hours per year | 5 Room volumes per hour<br>0 Hours per year |         |                       |

### **Building Sample Data**

2008

Data measured using static diffusion tubes, pumped adsorption tubes and Autofim FID Tubes analysed at ICI Paints Slough (UK) Environmental Laboratory which is NAMAS approved Diffusion tubes converted from ppm to mg/m3 Pumped adsorption tubes quoted direct as mg/m3 Autofim FID converted to mg/m3

| q                                |                |            |      |      |               |      |                   |
|----------------------------------|----------------|------------|------|------|---------------|------|-------------------|
| SAMPLE DESCRIPTION               | TUBE DATE      | MEK<br>ppm | TOL. | UENE | XYLENE<br>ppm | Ppm  | EXXSOL D40<br>ppm |
| Conversion Factor (ppm to mg/m3) | ng/m3)         |            | ω    | 3.83 |               | 4.41 | 5.37              |
| G/F BLD 23                       | Demolished     | ŭ.         | 0.0  | 0.0  |               | 0.0  | 0.0               |
| C/F BLD 23                       | Demolished     | <u>u</u>   | 0.0  | 0.0  |               | 0.0  | 0.0               |
| T/F BLD 23                       | Demolished     | ů.         | 0.0  | 0.0  |               | 0.0  | 0.0               |
| FIL/BLD 16+17                    | 28-Nov-03      |            | 0.0  | 0.9  |               | 0.4  | 3.3               |
| C/F RMP BLD 16                   | 28-Nov-03      |            | 0.0  | 0.0  |               | 0.0  | 0.0               |
| T/F RMP BLD16                    | 28-Nov-03      | w          | 1.9  | 0.9  |               | 0.0  | 1.7               |
| DSTLN BLD 38                     | Out of service | Ф          | 0.0  | 0.0  |               | 0.0  | 0.0               |
|                                  |                |            |      |      |               |      |                   |

## **Tank Vent Emission Calculator**

2008

All bulk storage tanks are either lagged or inside buildings so neglect breathing losses due to changes in ambient temperature and weather conditions as these are likely to be small.

Working losses from fixed roof storage tank using US EPA AP42 guidance for estimating emissions

Top filling

Using method based upon

Gt Total yearly throughput
V Tank capacity
Nt Tumovers per year
From Graph 5.2
Kn Turnover factor = 1 for less than 36 turnovers per year
Kc Product factor = 1 for organic liquids

**Bulk Solvent Storage Tanks** 

| 0                         |           | 0            | 0           | 0           | 0            | 0           | 0              | 0.05           | 2                     |                       |             |               |               |           |             |          |          |              |           |
|---------------------------|-----------|--------------|-------------|-------------|--------------|-------------|----------------|----------------|-----------------------|-----------------------|-------------|---------------|---------------|-----------|-------------|----------|----------|--------------|-----------|
| Benzyl Alc                | kg/year   |              |             |             |              |             |                | 0              | Benzyl Alc            |                       | kg/year     |               |               |           |             |          |          |              |           |
| yiene                     | kg/year   | 0.1          | 0.3         | 0.3         | 9.0          | 9.0         | 0              | 0              | (ylene                |                       | kg/year     | 0.3           | 0.3           | 0.3       | 0.3         | 0.2      | 0.2      | 0.2          | 0.2       |
| Exxsol D40 Aylerie        | kg/year   | 5.7          | 13.0        | 13.5        | 28.9         | 28.9        |                | 0.0            | Exxsol D40 Xylene     |                       | kg/year k   | 6.9           | 14.2          | 14.5      | 14.5        | 10.7     | 10.7     | 9.2          | 7.6       |
|                           | kg/year k |              | 13.3        | 13.8        | 29.5         | 29.5        | 8.0            | 0,1            |                       |                       | kg/year k   | 7.3           | 14.5          | 14.8      | 14.8        | 10.9     | 10.9     | 9.4          | 7.8       |
| Mol Wt                    | 0         | 143          | 143         | 143         | 143          | 143         | 143            | 108            | MWt                   | Mol Wt                | kg/kgmol kg | 3             | 143           | 143       | 143         | 143      | 143      | 143          | 143       |
|                           |           |              | 1.5         | 1.5         | 3.2          | 3.2         | 0.4            | 0.013          |                       |                       | D40 kPa kc  |               | 1.5           | 1.5       | 1.5         | 1.5      | 1.5      | 1.5          | 1.5       |
| Femo                      | 40        | 30           | 30          | 30          | 09           | 09          | 15             | 15             | Pvap                  | Store Temp Vap Press  | 70          | 30            | 30            | 30        | 30          | 30       | 30       | 30           | 30        |
| mp Store                  |           | 09           | 09          | 09          | 09           | 09          | 15             | 15             | S                     |                       | ပွ          | 40            | 40            | 40        | 40          | 40       | 40       | 40           | 40        |
| actor Fill Temp           |           | -            | -           | -           | ۳            | 0.8         | -              | -              | H                     | actor Fill Temp       | ပွ          | -             | -             | -         | ,-          | ,-       | -        | ٠            | ٠         |
| S T/O Factor              |           | 2            | 3.8         | 0           | 2            | 9           | 7.             | -              | X                     | s T/O Factor          |             | 80            | 0             | O         | o.          | e0.      | (1)      | ε.           | c         |
| v Turnover                | p.a.      |              |             |             |              | (r)         | 9              | e              | ž                     | Turnovers             | p.a.        | 38.8          |               |           | 19.9        | 29.3     |          | 5 25.3       | 21        |
| No Delivery Turnovers     |           | 3.7          | 8.6         | 8.9         | 8.9          | 8.9         | 12.4           | 4.3            |                       | Batch / pa            |             | 36            | 25            | 22        | 20          | 2        | C        | 22           | ò         |
| Delivery                  | litres    | 20000        | 20000       | 20000       | 20000        | 20000       | 27000          | 20000          |                       | Batch Size Batch / pa | litres      | 4000          | 0009          | 7500      | 7500        | 4000     | 4000     | 3500         | ADDO      |
|                           | a         | 74713        | 171542      | 177348      | 178220       | 178220      | 334897         | 86789          |                       |                       | litres      | 155200        | 155200        | 149600    | 149600      | 117200   | 117200   | 88600        | SANON     |
| Capacity Usage            | litres li | 20000        | 45000       | 45000       | 55000        | 4500        | 20000          | 28000          |                       | Mixer Size Production | litres li   | 5400          | 6800          | 0006      | 9000        | 4500     | 4500     | 4500         | 4500      |
| Tank Farm Number Material |           | 227 X101-561 | 28 X102-537 | 25 X102-548 | 267 X101-600 | 38 X101-600 | 279 Exosol D40 | 283 Benzyl Alc | ıks                   |                       |             | 201 W/G & U/C | 202 Undercoat | 3 W.Gloss | 204 W.Gloss | 70 Misc. | 71 Misc. | 16 Undrecoat | 217 Gloss |
| Number                    |           | 22           |             |             |              | 26          | 27             | 28             | ixing Tan             |                       |             | 20            |               |           |             | 27       | 27       | 21           | 21        |
| Fank Farm                 | ,         | 27           | 27          | 27          | 99           | 99          | 70             | 19             | External Mixing Tanks |                       |             | 68            | 67            | 67        | 49          | Internal | Internal | Internal     | Internal  |

All other solvent materials stored in drums

Total

0.1

3.1

158.2

161.4

| 7 | 7 |   |
|---|---|---|
| ä | 3 |   |
| 3 | 5 |   |
| ú | _ |   |
| F |   |   |
| • | - |   |
| ٠ |   |   |
| 1 | - | ١ |
| 1 | Ξ |   |
| 4 | Ų |   |
| 1 |   |   |
| 1 | 5 | ÷ |
|   | _ |   |
|   |   |   |
| ì | ㄷ |   |
|   |   | i |

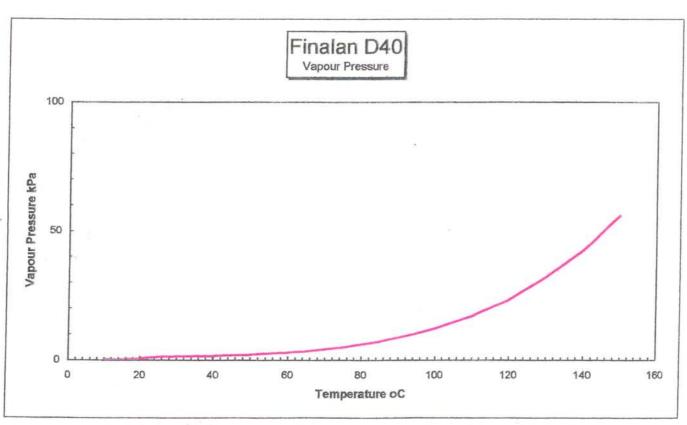
|       |                    |         |      |     |     |      | 8      |      |
|-------|--------------------|---------|------|-----|-----|------|--------|------|
|       | Total              | kg/year |      |     |     |      |        |      |
|       | Alcoh              |         | 0    | 0   | 0.1 | 0.1  | 86789  | %0.0 |
| L1002 | Benzyl Alcoh Total | kg/year |      |     |     |      | œ      |      |
|       |                    | _       | 0    | 0   | 0   | 0    | 0      | %0.0 |
| L1073 | Butanol            | kg/year |      |     |     |      |        | 0    |
|       |                    |         | 0    | 0   | 0   | 0    | 0      | %0.0 |
| L1093 | IPA                | kg/year |      |     |     |      |        |      |
|       |                    |         | 1278 | 277 | 158 | 1713 | 555084 | 0.3% |
| L1207 | Exxsol D40         | kg/year |      |     |     |      | ш      |      |
| L1230 | Xylene             | kg/year | 108  | 228 | 6   | 339  | 20557  | 1.6% |
|       |                    |         | 269  | 35  |     | 304  | 0      | 0.0% |
| L1224 | Toluene            | kg/year |      |     |     |      |        |      |
|       |                    |         | 84   | 0   |     | 84   | 0      | %0.0 |
| L1406 | MEK                | kg/year |      |     |     |      |        |      |
|       |                    |         |      |     |     |      |        |      |
|       |                    |         |      |     |     |      |        |      |
|       |                    |         |      |     |     |      |        |      |

0.4%

% Emission/Usage

Solvent Usage

Extracted Vents
Tank Filling
Total Emission


Fugitive

1738 540 161 2439 662430

### Vapour Pressure

Exxsol / Finalan D40

| Tempurature<br>oC | Exxsol D40<br>Pressure<br>kPa |     |
|-------------------|-------------------------------|-----|
| 10                |                               | 0.4 |
| 15                |                               | 0.4 |
| 20                |                               | 0.7 |
| 25                |                               | 1.3 |
| 30                |                               | 1.6 |
| 35                |                               | 1.7 |
| 37.8              |                               | 1.7 |
| 40                |                               | 1.9 |
| 45                |                               | 2.2 |
| 50                |                               | 2.4 |
| 55                |                               | 2.8 |
| 60                | W.                            | 3.2 |
| 65                |                               | 3.7 |
| 70                |                               | 4.4 |
| 75                |                               | 5.2 |
| 80                |                               | 6.3 |
| 85                |                               | 7.4 |
| 90                |                               | 8.9 |
| 95                | 1                             | 0.4 |
| 100               | 1                             | 2.4 |
| 110               | 1                             | 7.1 |
| 120               | 2                             | 3.4 |
| 130               | 3:                            | 2.1 |
| 140               | 4:                            | 2.7 |
| 150               | 50                            | 6.2 |



### 2.2.6 WASTE MANAGEMENT AND SUMMARY DATA ON WASTES ARISING

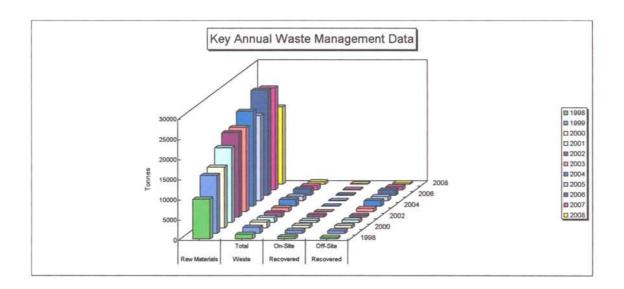
In 2008 we took a big step forward in reducing our levels for non-hazardous waste disposal by landfilling off site. We set a target of 0.5% but achieved 0.46%.

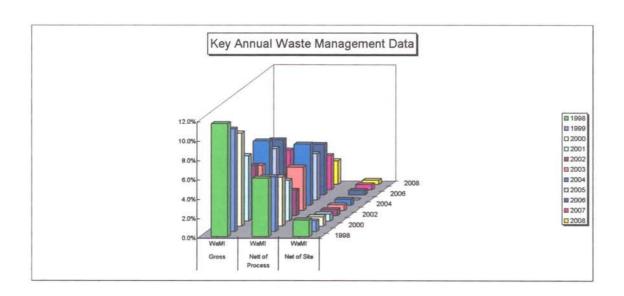
Waste targets are expressed as a percentage to date. We have already surpassed our Challenge 2010 target of 0.50%.

| 1997 1998     | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Actual Actual | Target |
| 1.3% 1.2%     | 1.1%   | 0.9%   | 0.8%   | 0.7%   | 0.8%   | 0.6%   | 0.6%   | 0.6%   | 0.51%  | 0.46%  | 0.45%  |

We are members of REPAK and we continue our programme of segregation of paper, cardboard, plastic, hence reducing the quantity of waste for landfilling.

In June 2004 the Company entered into an agreement with Ballygarvan Stone and Paving Co. to recycle water washings in the manufacture of decorative concrete products. This process has been licensed by Cork County Council. We also sent water washings abroad under licence for treatment and disposal. Solvent washings are sold on to recyclers.


### Attachments


- Information on Waste Streams (see PRTR printout)
- Summary of Waste Streams (see PRTR printout)
- Waste Annual Report

### Waste Annual Report

Key Annual Waste Management Data

| Year | Raw Materials | Waste<br>Total | Recovered<br>On-Site | Recovered<br>Off-Site | Disposal<br>On-site | Disposal<br>Off-site | Gross<br>WaMl | Nett of Process<br>WaMI | Net of Site<br>WaMl |  |
|------|---------------|----------------|----------------------|-----------------------|---------------------|----------------------|---------------|-------------------------|---------------------|--|
|      | te            | te             | te                   | te                    |                     |                      |               |                         |                     |  |
| 1998 | 9861          | 1151           | 555.5                | 427.5                 | 0                   | 168                  | 11.7%         | 6.0%                    | 1.7%                |  |
| 1999 | 14362         | 1519           | 709                  | 651                   | 0                   | 159                  | 10.6%         | 5.6%                    | 1.1%                |  |
| 2000 | 15083         | 1451           | 686                  | 617                   | 0                   | 148                  | 9.6%          | 5.1%                    | 1.0%                |  |
| 2001 | 18545         | 1248           | 473.2                | 638.3                 | 0                   | 137                  | 6.7%          | 4.2%                    | 0.7%                |  |
| 2002 | 20891         | 1074           | 527.5                | 414                   | 0                   | 133                  | 5.1%          | 2.6%                    | 0.6%                |  |
| 2003 | 20856         | 969            | 36.0                 | 811                   | 0                   | 122                  | 4.6%          | 4.5%                    | 0.6%                |  |
| 2004 | 23474         | 1555           | 76.0                 | 1336                  | 0                   | 143                  | 6.6%          | 6.3%                    | 0.6%                |  |
| 2005 | 21135         | 1121           | 108.0                | 1013                  | 0                   | 119                  | 5.3%          | 4.8%                    | 0.0%                |  |
| 2006 | 25998         | 1467           | 120.0                | 1231                  | 0                   | 115                  | 5.6%          | 5.2%                    | 0.4%                |  |
| 2007 | 25205         | 1022           | 140.0                | 757                   | 0                   | 125                  | 4.1%          | 3.5%                    | 0.5%                |  |
| 2008 | 19154         | 627            | 162.0                | 383                   | 0                   | 82                   | 3.3%          | 2.4%                    | 0.4%                |  |





### 2.2.7 ENERGY AND WATER CONSUMPTION

### 2.2.7 (a) **Energy Consumption**

The consumption of energy relates to:

### Natural Gas

Now used on the Cork site for the steam boiler and smaller central heating units in place of heavy fuel oil. Conversion took place in 1997.

In February 2007 our business in Dublin moved to a new premises which has a gas installation thus eliminating the use of gas oil for space heating.

Largest user is steam boiler. Refer to Resources Annual Report attached.

### Electricity

It is difficult to list the heavy users since we do not have any sub-metering on the site.

### Gas Oil

Is now only used for fork trucks and stand-by generators on the Cork Site. Cork usage has reduced substantially since converting the central heating systems and space heaters to natural gas.

### Minimisation Plan

In 1995 we initiated our Challenge 2000 plan to reduce our energy efficiency per tonne of productivity by 10% of the 1995 base level.

This reduction was achieved and is being exceeded as the attachments to this report will indicate.

Challenge 2005 set a reduction target of 15% on 2000 baseline. However, This target was surpassed and we achieved a reduction of 38% you compare the consumption of terrajoules against tonnes of production.

Challenge 2010 is now in place and targets for energy (-5%) and water consumption (-15%) have been set against the 2005 baseline. We are well on our way to achieving these targets.

We report on energy usage for the Cork site and for the combined energy usage for both Cork and Dublin sites.

### **Summary**

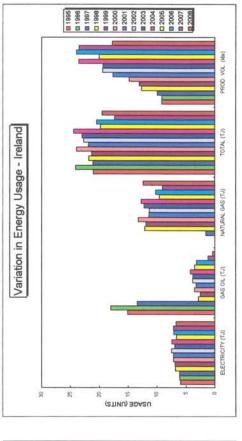
The variation in Energy Use report attached will indicate the decrease in energy usage when indexed to TJ's per tonne of production.

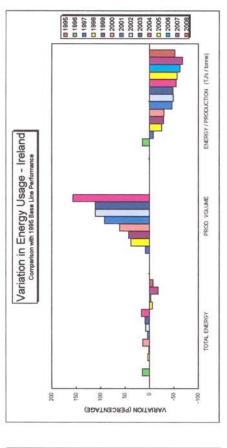
### 2.2.7 (b) WATER CONSUMPTION

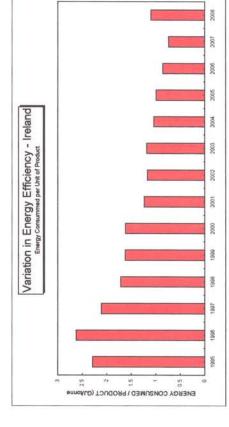
The main source of water for the site is from the municipal supply = 15,907M³ in 2008. The main consumers of water are:

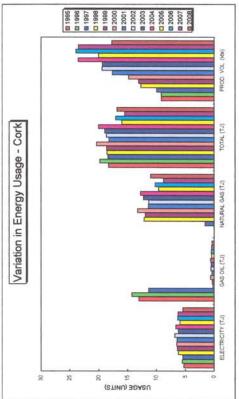
- Cooling water for process equipment 601M³ for 2008. This water is discharged to the river at SW2 in full compliance with Schedule 2 (i). Emissions to water parameters relative to maximum in any one day (1000M³) and temperature. The main reason for the big reduction in recent years was the demolition of Building 23.
- Process, washing and utility usage for 2008 was 15,306M³ calculated by subtracting cooling water usage from total municipal usage.

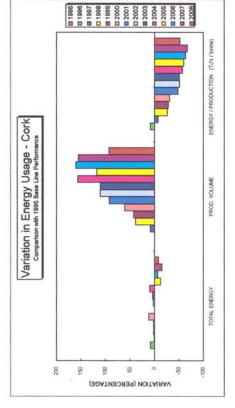
### **Summary**

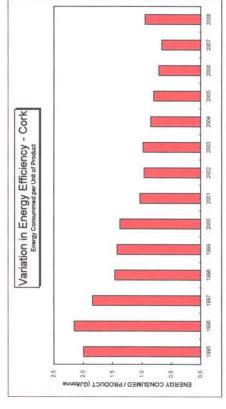

Our water consumption in 2008 was down by 3,529M³ on 2007 usage.


### **Attachments**


Page 1: Variation in Energy Use


Page 2: Energy Report


Page 3: Resources Annual Report

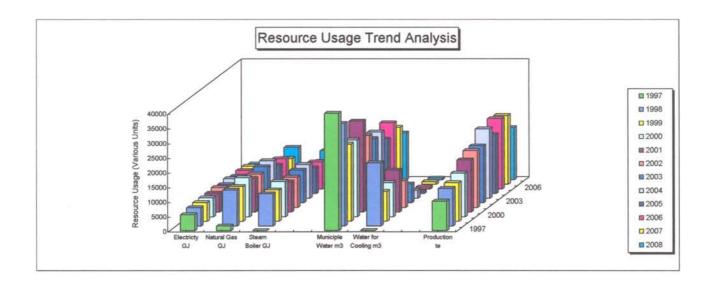











### Resources Annual Report

### Usage of Resources

| Parameter                 | Usage     | Usage     | Usage     | Usage     | Usage     |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-----------|-----------|-----------|-----------|-----------|
|                           | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004      | 2005      | 2006      | 2007      | 2008      |
|                           | Units     | Units     | Units     | Units     | Units     |
| Electricty GJ             | 5438  | 6224  | 6392  | 6505  | 6457  | 6801  | 6197  | 6681.24   | 5905.44   | 6325.56   | 6262.2    | 5427.36   |
| Natural Gas GJ            | 1600  | 12200 | 11900 | 13300 | 11400 | 11400 | 12300 | 12748.803 | 9635.2271 | 10242.116 | 8792.4298 | 11017.548 |
| Steam Boiler GJ           | 0     | 10980 | 10710 | 11970 | 10260 | 10260 | 11070 | 11474     | 8672      | 9218      | 7913      | 9916      |
| Municiple Water m3        | 39859 | 34897 | 26254 | 26096 | 30870 | 24477 | 21773 | 22483     | 18527     | 22566     | 19436     | 15907     |
| Water for Cooling m3      | 0     | 21428 | 10184 | 11568 | 14238 | 9074  | 6436  | 2655      | 749       | 612       | 932       | 601       |
| Production te             | 9985  | 12718 | 13164 | 14808 | 17652 | 19397 | 19387 | 23583     | 20014     | 23936     | 23490     | 17746     |
| Efficiency of water usage |       |       |       |       |       |       |       |           |           |           |           |           |
| Water m3 / te production  | 3.99  | 2.74  | 1.99  | 1.76  | 1.75  | 1.26  | 1.12  | 0.95      | 0.93      | 0.94      | 0.83      | 0.90      |

Note: Limited data for 1997



### **ENERGY REPORT -- CORK / DUBLIN**

| YEAR | ELECTRI   | CITY  | GAS     | SOIL   |           | NATURAL GAS | 3           | TOTAL  | % DIFF. | PROD. VOL. | % DIFF. | TJ's / tonne | % DIFF. |
|------|-----------|-------|---------|--------|-----------|-------------|-------------|--------|---------|------------|---------|--------------|---------|
|      | KWh       | TJ    | LITRES  | TJ     | KWh       | THERMS      | TJ          | TJ     | vs 1995 | TONNES     | vs 1995 | PROD VOL     | vs 1995 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 1995 | 1,649,122 | 5.937 | 353,576 | 15.133 |           | 0           | 0           | 21.070 |         | 9,191      |         | 0.00229      |         |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 1996 | 1,690,993 | 6.088 | 421,727 | 18.050 |           | 0           | 0           | 24.137 | 14.559  | 9,200      | 0.098   | 0.00262      | 14.447  |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 1997 | 1,696,594 | 6.108 | 313,458 | 13.416 | 452,500   | 15083.33    | 1.591       | 21.115 | 0.214   | 9,985      | 8.639   | 0.00211      | -7.755  |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 1998 | 1,892,682 | 6.814 | 66,174  | 2.832  | 3,458,500 | 115283.33   | 12.16239167 | 21.808 | 3.505   | 12,718     | 38.374  | 0.00171      | -25.200 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 1999 | 1,917,921 | 6.905 | 58,197  | 2.491  | 3387672   | 112922.40   | 11.9133132  | 21.309 | 1.133   | 13,100     | 42.531  | 0.00163      | -29.045 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2000 | 1,991,251 | 7.169 | 82,003  | 3.510  | 3778647   | 125954.90   | 13.28824195 | 23.966 | 13.747  | 14,808     | 61.114  | 0.00162      | -29.399 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2001 | 1,991,605 | 7.170 | 76,083  | 3.256  | 3252105   | 108403.50   | 11.43656925 | 21.863 | 3.763   | 17,652     | 92.057  | 0.00124      | -45.973 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2002 | 2,088,864 | 7.520 | 89,967  | 3.851  | 3,229,556 | 107651.87   | 11.35727193 | 22.728 | 7.868   | 19,397     | 111.043 | 0.00117      | -48.888 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2003 | 1,923,456 | 6.924 | 88,500  | 3.788  | 3,491,025 | 116367.50   | 12.27677125 | 22.989 | 9.108   | 19,387     | 110.935 | 0.00119      | -48.274 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2004 | 2,071,914 | 7.459 | 99,702  | 4.267  | 3625252   | 120841.73   | 12.74880287 | 24.475 | 16.161  | 23,583     | 156.588 | 0.00104      | -54.729 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2005 | 1,845,311 | 6.643 | 83,037  | 3.554  | 2739875   | 91329.17    | 9.635227083 | 19.832 | -5.874  | 20,014     | 0.000   | 0.00099      | -56.774 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2006 | 1,970,637 | 7.094 | 74,028  | 3.168  | 2912450   | 97081.67    | 10.24211583 | 20.505 | -2.682  | 23,936     | 0.000   | 0.00086      | -62.632 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2007 | 1,982,924 | 7.139 | 27,115  | 1.161  | 2,572,161 | 85738.70    | 9.04543285  | 17.344 | -17.681 | 23,490     | 0.000   | 0.00074      | -67.791 |
|      |           |       |         |        |           |             |             |        |         |            |         |              |         |
| 2008 | 1,864,616 | 6.713 | 9,505   | 0.407  | 3,535,866 | 117862.20   | 12.4344621  | 19.554 | -7.195  | 17,746     | 0.000   | 0.00110      | -51.935 |

### **ENERGY REPORT -- CORK**

| YEAR | ELECTRI   | ELECTRICITY GAS |         | GAS OIL NATURAL O |           | NATURAL GAS | 3           | TOTAL  | % DIFF. | PROD. VOL. | % DIFF. | TJ's / tonne | % DIFF. |
|------|-----------|-----------------|---------|-------------------|-----------|-------------|-------------|--------|---------|------------|---------|--------------|---------|
|      | KWh       | TJ              | LITRES  | TJ                | KWh       | THERMS      | TJ          | TJ     | vs 1995 | TONNES     | vs 1995 | PROD VOL     | vs 1995 |
| 1995 | 1,467,000 | 5.281           | 304,843 | 13.047            |           | 0           | 0           | 18.328 |         | 9,191      |         | 0.00199      |         |
| 1996 | 1,536,000 | 5.530           | 334,090 | 14.299            |           | 0           | 0           | 19.829 | 8.185   | 9,200      | 0.098   | 0.00216      | 8.079   |
| 1996 | 1,536,000 | 5.530           | 334,090 | 14.299            |           | U           | U           | 19.029 | 0.100   | 9,200      | 0.098   | 0.00216      | 6.079   |
| 1997 | 1,510,500 | 5.438           | 266,117 | 11.390            | 452,500   | 15083.33    | 1.591       | 18.419 | 0.493   | 9,985      | 8.639   | 0.00184      | -7.498  |
| 1998 | 1,729,000 | 6.224           | 5,032   | 0.215             | 3,458,500 | 115283.33   | 12.16239167 | 18.602 | 1.493   | 12,718     | 38.374  | 0.00146      | -26.653 |
| 1999 | 1,775,550 | 6.392           | 8,205   | 0.351             | 3,387,672 | 112922.40   | 11.9133132  | 18.656 | 1.789   | 13,100     | 42.531  | 0.00142      | -28.584 |
| 2000 | 1,806,850 | 6.505           | 14,118  | 0.604             | 3,778,649 | 125954.97   | 13.28824898 | 20.397 | 11.287  | 14,808     | 61.114  | 0.00138      | -30.927 |
| 2001 | 1,793,560 | 6.457           | 8,629   | 0.369             | 3,252,105 | 108403.50   | 11.43656925 | 18.263 | -0.359  | 17,652     | 92.057  | 0.00103      | -48.119 |
| 2002 | 1,889,100 | 6.801           | 12,927  | 0.553             | 3,229,556 | 107651.87   | 11.35727193 | 18.711 | 2.089   | 19,397     | 111.043 | 0.00096      | -51.627 |
| 2003 | 1,721,300 | 6.197           | 12,200  | 0.522             | 3,491,025 | 116367.50   | 12.27677125 | 18.996 | 3.640   | 19,387     | 110.935 | 0.00098      | -50.866 |
| 2004 | 1,855,900 | 6.681           | 14,411  | 0.617             | 3625252   | 120841.73   | 12.74880287 | 20.047 | 9.375   | 23,583     | 156.588 | 0.00085      | -57.373 |
| 2005 | 1,640,400 | 5.905           | 10,605  | 0.454             | 2739875   | 91329.17    | 9.635227083 | 15.995 | -12.734 | 20,014     | 117.757 | 0.00080      | -59.925 |
| 2006 | 1,757,100 | 6.326           | 12,250  | 0.524             | 2912450   | 97081.67    | 10.24211583 | 17.092 | -6.746  | 23,936     | 160.429 | 0.00071      | -64.192 |
| 2007 | 1,739,500 | 6.262           | 10,915  | 0.467             | 2,500,217 | 83340.57    | 8.792429783 | 15.522 | -15.313 | 23,490     | 155.576 | 0.00066      | -66.864 |
| 2008 | 1,507,600 | 5.427           | 9,505   | 0.407             | 3,132,952 | 104431.73   | 11.01754787 | 16.852 | -8.057  | 17,746     | 93.080  | 0.00095      | -52.381 |

### 2.2.8 ENVIRONMENTAL INCIDENTS AND COMPLAINTS

### **Environmental Incidents/Complaints**

In 2008 we had no reportable incident / complaint .

#### ICI DULUX PAINTS IRELAND LTD.

#### 2.2.9 AER SUMMARY OF EMISSIONS

Includes information on Waste Arisings.

Please note: EPA AER worksheets have been uploaded separately on to EAP website – have not been included in this document due to document file size.

#### 2.3.1 Management of the Activity

#### Condition 2 of our IPPC Licence Reg. No. P0218-01

#### **Condition 2.6 Corrective Action**

All non conformances with the specified requirements of our licence are immediately investigated and reported initially verbally to the Agency or to the Local Authority as appropriate and followed by a written report of the incident with corrective actions taken to prevent re-occurance.

The responsibility for initiating all investigations and corrective actions rests with the Site Resources Manager. Substantial corrective actions if necessary would be carried out with board approval.

#### **Condition 2.7 Awareness and Training**

A copy of the licence has been issued to all senior managers, department heads and to all relevant personnel whole duties relate to any condition/procedure of the licence.

Persons performing specific functions that have a direct bearing on licence conditions have been made aware or trained to conform with the appropriate activities. "Near Miss" training for new employees includes familiarisation with our IPPC licence, especially the sections most relevant to the operational area of the new employee.

Training records will verify the above.

#### **Condition 2.8 Responsibilities**

A list of site contacts (3) have been nominated to be available on site at all times to provide prompt access to EPA personnel as required under Section 13 (i) of the EPA Act 1992.

All site security and reception staff have been notified and appropriate notices are displayed at both locations.

#### **Condition 2.9 Communications**

A file for public information concerning environmental performance by the Company is in place and available at all reasonable times.

#### **Environmental Objectives and Targets 2008**

|       | Objectives                                                                                                        | Targets                                                                                                                                                                                        |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 08.01 | To continue with waste minimization programme of achieving 0.5% per tonne of production. Objective 2008 is 0.525% | 2000       2008       2010         Baseline       Target       Goal         0.9%       0.525%       0.5%                                                                                       |  |  |  |  |  |
| 08.02 | To continue training employees in waste management techniques.                                                    | Train employees to further develop their waste minimization techniques through toolbox talks and AKZO sustainability programmes etc. Project cost: €2K                                         |  |  |  |  |  |
| 08.03 | To reduce energy consumption measured Gj/Te production                                                            | Install intermittent timers on conveyor systems. Install occupancy light sensors. Carry out air monitoring surveys. Purchase new energy efficient light fittings. Project cost: €5K            |  |  |  |  |  |
| 08.04 | Carry out risk assessments, part of ATEX compliance.                                                              | Actions have arisen from the risk assessment process which will make the solvent borne process safer and more environmentally friendly. Actions known and plan put in place. Project cost: €5K |  |  |  |  |  |
| 08.05 | To re-cycle process water washings into designated products.                                                      | Re-formulate designated products to allow process water washings be recycled.                                                                                                                  |  |  |  |  |  |
| 08.06 | To clear site of stored process water washings                                                                    | Clear site of stored process water washings by treatment/disposal abroad under TFS license. Project cost: €40K                                                                                 |  |  |  |  |  |
| 08.07 | To address powder handling issue in the main production area                                                      | Form team and get input from operators on how best to handle the different FIBC bags. Establish how best to eliminate the dust and implement the changes.  Project cost: €85K                  |  |  |  |  |  |
| 80.80 | To increase pallet storage capacity in the RMS                                                                    | Avoid block stacking of powders in the RMS                                                                                                                                                     |  |  |  |  |  |
| 08.09 | To remove all Finished Goods off yard and store indoors.                                                          | To install storage capacity for 650 pallets indoors                                                                                                                                            |  |  |  |  |  |
| 08.10 | To re-arrange racking layout in Finished Goods Warehouse                                                          | To widen racking to allow storage of larger pallets and increase capacity  Project cost: €200k                                                                                                 |  |  |  |  |  |

#### **DULUX PAINTS IRELAND.**

| 3.3.2 | Review of Environmental Management Programme 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08.01 | This objective of minimizing our waste to 0.525% per tonne of production was achieved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Project completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08.02 | Waste Sustainability Campaigns and the use of site "Tool Box Talks" were carried out. Waste Minimization team's carried out audits and were involved in practical demonstrations of waste reuse and recyle                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Project completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08.03 | Conveyor timers were altered to shut down idle conveyors when not in use. More energy efficient fluorescent lamps were fitted. Heating thermostatic valves were fitted                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Project Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08.04 | Atex 137 audit/report carried out by CDG Engineering consultants – actions to the value of €sk were completed. Project 90% completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Project carry over to 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 08.05 | Re-formulations were carried out on selected products to allow water more washings be recycled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Project completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08.06 | Build-up of IBC containers , 50klts of water washings are stored on site and must be disposed of off site in 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Project carry over to 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 08.07 | A number of options were pursued to address the powder handling issues in the HSD department. These options covered the installation of Silos, Hopper system, re-engineer the existing equipment and simplify the current layout. The site was not convinced the different options would have eliminated the dust issues and asked for more technical expertise from ICI. Due to the economic down turn and reduction in production activity the issue is not as major as it was in 2007 but nevertheless must be addressed. Additional resource has been made available from Akzonobel to help come to an agreed solution. |
|       | Project carry over to 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 08.08 | Study carried out on powder stores layout. Project costed and expenditure proposal put forward to the executive board. Expect sanction in early 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Project carry over 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 08.09 | Due to the downturn in the market and the reduction in stock this project has been put on hold for the foreseeable future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Project on hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08.10 | Due to the downturn in the market and the reduction in stock this project has been put on hold for the foreseeable future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Project on hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### **Environmental Objectives and Targets 2009**

|       | Objectives                                                              | Targets                                                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09.01 | To continue with waste minimization programme . Objective 2009 is 0.45% | 2000 2008 2009 Baseline Act Target 0.9% 0.46% 0.45%                                                                                                                                                                   |
| 09.02 | Continue training employees in waste management techniques.             | Train employees to further develop their waste minimization techniques through toolbox talks and AKZO sustainability programmes ie. Carry out a "GREEN" week during the year.  Project cost: €2K                      |
| 09.03 | To reduce energy consumption measured Gj/Te production                  | Install intermittent timers on agitator systems. Install occupancy light sensors. Carry out air monitoring surveys.Reduce external lighting levels. Purchase new energy efficient light fittings.  Project cost:    K |
| 09.04 | Install a new Power Factor<br>Correction Unit.                          | Install a new PFC unit to reduce any wattless consumption of electricity. Saving of €6k/annum <b>Project cost:</b> €10K                                                                                               |
| 09.05 | To re-cycle process water washings into designated products.            | Re-formulate designated products to allow process water washings be re-cycled.                                                                                                                                        |
| 09.06 | To clear site of stored process water washings                          | Clear site of stored process water washings by treatment/disposal abroad under TFS license. Project cost: €40K                                                                                                        |
| 09.07 | To address powder handling issue in the main production area            | Form team and get input from operators on how best to handle the different FIBC bags. Establish how best to eliminate the dust and implement the changes.  Project cost: €100K                                        |
| 09.08 | To increase pallet storage capacity in the RMS                          | Avoid block stacking of powders in the RMS <b>Project cost: €35K</b>                                                                                                                                                  |
| 09.09 | Repair sewer system                                                     | Some leakage in sewer system following Test carried out in Nov. 2008.  Project cost: €3K                                                                                                                              |

#### **Dulux Paints Ireland.**

#### 2.3.4 Environmental objectives and Target 2009

#### 09.01 Objective / Target

The company's aim is to continue to reduce our waste to land fill and surpass our 2010 goal of 0.5% per tonne of production. Our target for 2009 is 0.45% per tonne of production.

#### 09.02 Objective / Target

As waste reduces it gets more difficult to achieve the targets that are set. In order to achieve these targets it is necessary to train employees in waste reduction, reuse and re-cycling techniques. This will be an on-going process throughout the year. We will use tool box talks and other training tools available from Akzonobel- ie. "Green Team" involvement.

Project cost: €4K

#### 09.03 Objective / Target

Energy conservation and reduction is a major concern for industry as fuel costs escalate at enormous rates. An energy audit has been carried out to identify areas where actions can be taken to reduce the company dependence on Electricity, Gas and Water. These recommendations consist of changing to more efficient light fittings {High Frequency}, air leak monitoring, installation of occupancy sensors and the resetting of conveyor timeout sensors also yard lighting will be cut back to safe working levels.

Project cost: €5k

#### 09.04 Objective / Target

A new 189KV Ar automatic Power Factor Correction Panel will be installed and fed from a spare switch fuse. The regulator on this panel will be utilized to automatically switch the capacitor steps, incorporating them into the overall control, which will increase the Power Factor to 0.98, thereby reducing the equipment {motors} efficiency losses by 10%. This has been verified by a survey and consequently the electrical distributor has determined that we would save 6k/yr. by reducing the maximum required current needed for the site.

Project cost: €5K

#### 09.05 Objective / Target

As part of our re-evaluation of the process water washings, our technical staff examined the possibility of using more of the process water washings in product manufacture. The analysis proved successful and more products have been identified due to the increase in portfolio of products since the AKZONOBEL takeover. These products will be re-formulated to incorporate some process water washings. This practice is carried out right across Akzonobel factories.

#### 09.06 Objective / Target

There exists a limited outlet for process water washings during 2007/8. There has been a build-up on site of intermediate bulk containers (IBC's) containing the process water washings. It is the company's intention to remove same off site, for treatment / disposal abroad, by an approved contractor under TFS licence.

Project cost: €40K

#### 09.07 Objective / Target

A problem with powder handling has surfaced in the main high speed dispersion department. The existing powder handling equipment is struggling to contain and dispense the powder in an acceptable manner. A team will be formed to study the existing operation and come up with proposals on how best to handle and dispense the different powders from FIBC bags into the dispersers.

Project cost: €100K

#### 09.08 Objective / Target

A study will take place on pallet racking in the Raw Material Stores to examine best practice on layout, to allow stock rotation and cycle counting.

Project cost: €35k

#### 09.09 Objective / Target

A test of sewer system took place in 2008 and seepage in one section was discovered. This will be repaired in 2009.

Project cost: €3K

#### 2.3.5 POLLUTION EMISSION REGISTER (PER)

#### Condition 2.4.1 of our Licence Reg. No 218

The following 8 chemicals have been proposed for PER evaluation:

- 1. Exxsol D40
- 2. Toluene
- 3. Xylene
- 4. Algon P/SR 1225 Biocide
- 5. Acticide CHR0107 Biocide
- 6. Metacide 300 Biocide
- 7. Konservan Biocide
- 8. Preventol A45 Fungicide

The PER for each of the above chemicals has been produced from a range of data and techniques. Some of the background to this data is included in this note to better explain our methods.

#### **Raw Material Inputs**

Using our purchasing records we are able to calculate raw material input.

Using our Technical data base we are able to break back bought in intermediates, such as resins, to give their contribution to the PER for each compound. Raw material stocks are tightly controlled so any changes to on site inventory will be small and not have been neglected from these calculations.

#### Releases to Air

The releases to air have been calculated by a range of recognised techniques. Measurements have been conducted using static diffusion tubes, pumped absorption tubes and a portable Autofim FID. Emissions are calculated using US EPA AP42 techniques to give fugitive emissions from buildings, filling losses from external tanks and extract vent losses from forced extraction systems.

The material listed as 4 to 8 are all biocides and are considered non volatile. Hence they have a zero value for their release to atmoshpere.

#### **Releases to Effluent**

All liquid process wastes were sent for recovery, hence this is a zero response.

#### **Releases to Waste**

All liquid process wastes were sent for recovery, hence this is a zero response. No liquid waste has left the site for landfilling since 1994.

#### **Product Output**

The product output is calculated by mass balance. We are obliged to use this method due to the large range of products and pack sizes manufactured on this site. We produce four main brands and a large number of auxiliary product ranges in all totalling approx. 1700 different stock units. With individual variations in batch formulations and contributions from bought-in intermediates it would be very difficult to break back this data to give a direct measure of the amount of each PER compound in the final product.

#### **Recovery Output**

In 2008 no water washings were removed off site under TFS licence for treatment/recovery abroad. In July of 2004 the company entered into an agreement with a local decorative concrete products manufacturer to incorporate water washings in the in the manufacture of same. However, with the downturn in the construction industry and the inevitable reduction in paint manufacture no water washings were recycled in this way in 2008. 162M³ of water washings were recycled back into our manufacturing process.

Solvent washings and paint drainings from process equipment is also sold off to paint recyclers. 16K litres fell into this category in 2008.

#### **Treated Output**

There is no treatment plant on the site, hence a zero response.

Some biocide may be consumed as part of its normal function within the paint during the manufacture of the final product. This stays with final product and is not accounted for in these calculations.

#### **Unaccounted Output**

This has been assumed to be zero. Because our technique of calculating the amount of each compound leaving the site in the produce uses the mass balance we are unable to calculate the unaccounted output as a separate item.

The PER and Fugitive Emissions Evaluation are closely linked in that solvent emissions are measured by using static diffusion tubes, pumped absorption tubes and a portable Autofim FID.

#### Attachments

Page 1: Pollution Emission Register Form
Page 2: Pollution Emission Register (Environmental Theme)
Page 3: Mass Balance based upon mixture of measured, estimated and Numerical sources
Page 4: IGEE and INEE graphs
Page 5: Raw Materials 2008 which contain materials relevant to PER
Page 6: Recycling – materials recovered on site for recycling or sale as

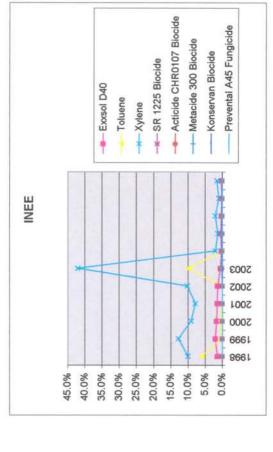
secondary product

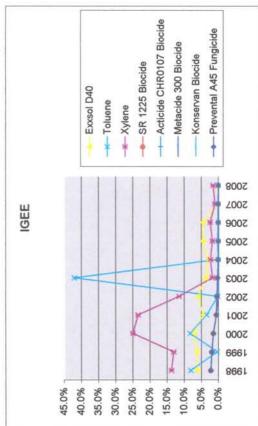
# Facility Identification

|               |                 | 1670E,7400N             | Jan-08 to Dec-08 | 17746 te          | 153         |
|---------------|-----------------|-------------------------|------------------|-------------------|-------------|
| Facility Name | IPC Register No | National Grid Reference | Reporting Period | Production Amount | Employee No |

# Pollutants Summary

| EPIndex             |          | 0.3%         | #DIV/0!   | 1.6%      | #DIV/0!                     | %0.0                       | %0.0                   | %0.0                | #DIV/0i                   |
|---------------------|----------|--------------|-----------|-----------|-----------------------------|----------------------------|------------------------|---------------------|---------------------------|
| EPIndex<br>IGEE     |          | 0.3%         | #DIV/0!   | 1.6%      | #DIV/0!                     | %0.0                       | %0.0                   | %0.0                | #DIV/0!                   |
| Output<br>Unaccount |          |              |           |           | 1                           |                            |                        |                     |                           |
| Output<br>Treated   |          | ı            | 1         | 1         | ı                           | ı                          | 1                      | 1                   | ı                         |
|                     | MOM      | WE           | M/E       | M/E       | M/E                         | ME                         | M/E                    | ME                  | M/E                       |
| Output              |          | 0            | 0         | 0         | 0                           | 0                          | 0                      | 0                   | 0                         |
|                     | MOM      | B            | В         | 8         | В                           | В                          | 8                      | B                   | В                         |
| Output              |          | 553371       | -304      | 20218     | 0                           | 28719                      | 0                      | 9268                | 0                         |
| 0.1                 |          | I            | i         | 1         | I                           | i                          | 1                      | i                   | ł                         |
| Output              |          | i            | i         | 1         | ı                           | i                          | 1                      | i                   | I                         |
|                     | MOM      | I            | i         | 1         | ł                           | 1                          | 1                      | 1                   | i                         |
| Output              | Effluent | I            | 1         | 1         | I                           | 1                          | 1                      | 1                   | I                         |
| MOM                 |          | M/E          | ME        | M/E       | I                           | 1                          | 1                      | I                   | 1                         |
| Output              |          | 1713         | 304       | 339       | i                           | i                          | 1                      | 1                   | ı                         |
| Gross (Jsage /      |          | 555084       | 0         | 20557     | 0                           | 28719                      | 0                      | 9268                | 0                         |
| Input               |          | 555084       | 0         | 20557     | 0                           | 28689                      | 0                      | 9259                | 0                         |
| CAS No              |          | 64742-48-9   | 108-88-3  | 1330-20-7 |                             |                            |                        |                     |                           |
| No Material         |          | 1 Exxsol D40 | 2 Toluene | 3 Xylene  | 4 Algon P / SR 1225 Biocide | 5 Acticide CHR0107 Biocide | 6 Metacide 300 Biocide | 7 Konservan Biocide | 8 Prevental A45 Fungicide |


Preparations, not substances


All units in kg

M - Direct Measurement E - Engineering Estimate B - Material Balance O - Other MOM - Method of measurement

Mass balance based upon mixture of measured, estimated and numerical sources

| MOM                            | 1            | I         | I                            | I                                 | I            | I                               | 1                           | 1           | 22                  |           |          |           |                  |                                   |              |                                 |                           |               |             |             |            |                              |                 |           |              |             |                           |                              |
|--------------------------------|--------------|-----------|------------------------------|-----------------------------------|--------------|---------------------------------|-----------------------------|-------------|---------------------|-----------|----------|-----------|------------------|-----------------------------------|--------------|---------------------------------|---------------------------|---------------|-------------|-------------|------------|------------------------------|-----------------|-----------|--------------|-------------|---------------------------|------------------------------|
| Output<br>Liquid<br>Effluent   | 1            | 1         | 1                            | ŀ                                 | ı            | 1                               | I                           | 1           | Output<br>Unaccount |           | ı        | 1         |                  | 1                                 | E            | 1                               | I                         |               | I           |             |            |                              |                 |           |              |             |                           |                              |
| Output<br>MOM Air<br>Total     | 1713         | 304       | 339                          | 0                                 | 0            | 0                               | 0                           | 0           | Output              | C         |          | 00        |                  | 0                                 | 34           | 0                               | 7                         |               | 0           |             |            | ubstances                    |                 |           |              |             |                           |                              |
| MOM                            | Σ            | Σ         | Σ                            | ı                                 | I            | 1                               | 1                           | 1           |                     |           |          |           |                  |                                   |              |                                 |                           |               |             |             |            | S, not s                     | 5               |           |              |             |                           |                              |
| act put                        | 277          | 35        | 228                          | I                                 | ı            | 1                               | I                           | 1           | Output              | Total     | 0 0      | 00        |                  | 0                                 | 0            | 0                               | 0                         |               | 0           |             |            | Preparations, not substances | All units in kg |           |              |             |                           |                              |
| MOM Air<br>Extr                | ш            | ш         | ш                            | 1                                 | 1            | 1                               | 1                           | 1           |                     | MOM       | IN/E     | MAE       |                  | MA                                | M/E          | MÆ                              | M/E                       |               | M/E         |             |            |                              |                 |           |              |             |                           |                              |
| Output<br>Air<br>Tanks         | 158          | 1         | 0                            | I                                 | ł            | 1                               | 1                           | 1           | Output              | Recycle   | 0        | 0         |                  | 0                                 | 0            | 0                               | 0                         |               | 0           |             |            |                              |                 |           |              |             |                           |                              |
| Out<br>MOM Air<br>Tan          | Σ            | Σ         | Σ                            | I                                 | 1            | 1                               | 1                           | 1           |                     |           | MA/TI    | MÆ        |                  | M/E                               | M/E          | M/E                             | M/E                       |               | M/E         |             |            |                              |                 |           |              |             |                           |                              |
| Output<br>Air<br>Fugitive      | 1278         | 269       | 108                          | ı                                 | ŀ            | 1                               | ı                           | 1           | 1                   |           | 0 0      | 00        |                  | 0                                 | 0            | 0                               | 0                         |               | 0           | EPIndex     |            | #DIV/01                      | 1.6%            | #DIV/OI   | 0.1%         | #DIV/0I     | 0.1%                      | #DIV/0I                      |
| Gross                          | 555084       | 0         | 20557                        | 0                                 | 28715        | 0                               | 9267                        | 0           |                     | Σ         | ۵ ۵      | o co      |                  | m                                 | В            | В                               | В                         |               | m           | EPIndex     |            | %£.0<br>₩DIV/DI              | 1.6%            | #DIV/0I   | 0.1%         | #DIV/DI     | 0.1%                      | #DIV/0I                      |
|                                | 0.0          | 0.0       | 0.0                          | 0.0                               | 25.4         | 0.0                             | 8.2                         | 0.0         | Output<br>Product   | FE2374    | 10000    | 20218     |                  | 0                                 | 28715        | 0                               | 9267                      |               | 0           | 70          | Waste      | 304                          | 339             | 0         | 34           | 0           | Ξ                         | 0                            |
| Input Input Component Recycled | 220187       | 0         | 11680                        | 0                                 | 4475         | 0                               | 0                           | 0           |                     | MOM       | ı        | 1         |                  | 1                                 | E            | 1                               | i                         |               | 1           |             |            | 304                          | 339             | 0         | 34           | 0           | -                         | 0                            |
| Input                          | 334897       | 0         | 8877                         | 0                                 | 24214        | 0                               | 9259                        | 0           | Output              |           | I        | ii        |                  | I                                 | i            | i                               | I                         |               | 1           | Gross       |            | 555084                       | 20557           | 0         | 28715        | 0           | 9267                      | 0                            |
| CAS No                         | 64742-48-9   | 108-88-3  | 1330-20-7                    | *(                                |              | *                               |                             |             | CAS No              | 0 00 0000 | 100 00 2 | 1330-20-7 |                  |                                   | ×            |                                 |                           |               | •           | CAS No      | 0 00 00 00 | 108-88-3                     | 1330-20-7       |           | *            |             |                           | *                            |
| No Material                    | 1 EXXSOL D40 | 2 TOLUENE | 3 XYLENE<br>SR1225 BIOCIDE / | 4 Algon P<br>PRODUCT V189 BIOCIDE | 5 / Acticide | 6 ROCIMA GT<br>SR1138 BIOCIDE / | 7 Mergal 728s PREVENTOL A4S | 8 FUNGICIDE | No Material         | CAC ICONY |          |           | SR1225 BIOCIDE / | 4 Algon P<br>PRODUCT V189 BIOCIDE | 5 / Acticide | 6 ROCIMA GT<br>SR1138 BIOCIDE / | Konservan / 7 Mergal 728s | PREVENTOL A4S | 8 FUNGICIDE | No Material |            | 2 TOLLIENE                   |                 | 4 Algon P | 5 / Acticide | 6 ROCIMA GT | Konservan / 7 Mergal 728s | PREVENTOL A4S<br>8 FUNGICIDE |





These raw materials are known to contain materials relevant to the PER Materials known to contain PER are also broken back to give the PER components

| OCIDE<br>otal kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                               |                                  |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         | 0.00%   | 75.60%                                  | 0.00%                             | 24.40%                          | 0.00%                           |                     |                     |           |                   |       |                                              |                                                                                |                     | 37948                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|--------------------------|---------|--------|-----------------------------------------|-------------------------|------------------------|----------------|-------------------------|----------|----------|--------------------------------|----------|---------------|----------------------|---------|---------|-----------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------|---------------------|-----------|-------------------|-------|----------------------------------------------|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|
| BIOCIDE BIOCIDE<br>CHR0107 kg Total kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                               |                                  |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         | 24214                                   |                                   |                                 |                                 | 3256.17             | 19.41               | 225 2786  | 14.43             | 7     | 0 0                                          | 0 0                                                                            | 960.018             | 24214<br>4475<br>28689                                 |
| BIOCIDE B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                               |                                  |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         | 100%                                    |                                   |                                 |                                 | 0.2%                | 0.6%                |           | 0.83%             | 0.1%  | 0.2%                                         | 0.2%                                                                           | 0.2%                |                                                        |
| BIOCIDE BIOMIXED BIOM |                                                                  |                                                               |                                  |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         | 0       |                                         | 0                                 | 9259                            | 0                               |                     |                     |           |                   |       |                                              |                                                                                |                     | 9259<br>0<br>9259                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                               |                                  |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         | 100%    |                                         | 100%                              | 100%                            | 100%                            |                     |                     |           |                   |       |                                              |                                                                                |                     |                                                        |
| ALC BIOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                               | 86789                            |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | 96789<br>0<br>86789                                    |
| LC BENZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                               | 38 %0.001                        |                          |         |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | - 5                                                    |
| TOLUENE TOLUENE BENZALC BENZALC BIOGIDE % kg %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                               | 9                                |                          | 0       |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | 000                                                    |
| IE TOLUE<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                               |                                  |                          | %       |        |                                         |                         |                        |                |                         |          |          |                                |          |               |                      |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                               |                                  |                          | 100%    |        |                                         |                         |                        |                |                         |          |          |                                | 60.11    |               |                      |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | 707                                                    |
| XYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                |                                                               |                                  |                          |         | 8877   |                                         |                         | 88                     |                | 1625                    |          |          |                                | 4166     |               | 39                   |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | 8877<br>11680<br>20557                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                               |                                  |                          |         | 100%   | 27%                                     |                         | 4%                     |                | 3%                      | 1%       | 3,8      | 2% %                           | 3%       | 2             | 42%                  |         |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     |                                                        |
| Socsol D40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1368                                                             | 000                                                           |                                  | 334897                   | 261     |        | (                                       | 0                       | 1264                   | 769            | 3114                    | 82872    | 80       | 38768                          | 56751    | 0             |                      | 0       |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     | 334897<br>220187<br>555084                             |
| Exisol D40 Exisol D40 XYLENE %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44%<br>40%<br>40%                                                | 52%<br>52%<br>30.5%                                           |                                  | 100%                     | 100%    |        | 45%                                     | 40.0%                   | 30%                    | 23%            | 39%                     | 46.5%    | 30%      | 37.3%                          | 32%      | 58%           |                      | 33%     |         |                                         |                                   |                                 |                                 |                     |                     |           |                   |       |                                              |                                                                                |                     |                                                        |
| UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                              | ***                                                           | <b>Y Y Y</b>                     |                          |         | ٦٧     | <b>Y Y</b> :                            | ××                      | **7                    | ××             | ¥¥                      | ×        | c x      | ××                             | × 2      | ζ×            | ××                   | ×       | ¥       | ×                                       | ×                                 | ×                               | ¥                               | ¥                   | . 3                 | ć         | ¥                 | ×     | ××                                           | ××                                                                             | ×                   | * * *                                                  |
| 2008<br>USAGES U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3421                                                             | 400                                                           | 96789                            | 334897                   | 0       | 10203  | 00                                      | 00                      | 760                    | 3030           | 74713                   | 178220   | 0081     | 171542                         | 177348   | 0             | 106                  | 0       | 0       | 24214                                   | 0                                 | 9269                            | 0                               | DATATA              | 3000                | 26.00     | 27142             | 14430 | 00                                           | 00                                                                             | 480009              | 738326                                                 |
| 87.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZIRCONIUM 18% HARCAT ZING NAPHTHENATE 12* COLBALT 10% DRIER 2013 | DRIER<br>CALCIUM 10%/SOL. CALCIUM 10%<br>10% MANAGNESE DRIERS | 70                               |                          |         |        | 391W                                    |                         |                        |                | 101-561                 | 101-600  |          |                                |          |               |                      | _ ;     |         | BIOCIDE /                               | SIOCIDE /                         | Mergal                          | SFUNGICIDE                      | 935-                | X935-               |           |                   |       |                                              | (see above)<br>R                                                               | SULTRA              |                                                        |
| PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZIRCONIUM 18%<br>HARCAT ZINC NA<br>COLBALT 10%                   | DRIER<br>CALCIUM 10%/SOL. CALCII<br>10% MANAGNESE DRIERS      | BENZYL ALCOHOL<br>BUTANOL<br>IPA | EXXSOL D40<br>EXXSOL D80 | TOLUENE | XYLENE | BEETLE RESIN BE 660<br>SUPERGELKYD 391W | RESIN 102-714<br>URANOX | K9121<br>RESIN 200-609 |                | RESIN 101-373 / 101-561 |          |          | RESIN 102-499<br>RESIN 102-537 |          | RESIN 190-165 |                      |         | Algon P | PRODUCT V189 BIOCIDE / Acticide CHR0107 | METACIDE 300 BIOCIDE<br>ROCIMA GT | SR1138 BIOCIDE /<br>Konservan / | 728s<br>PREVENTOL A4S FUNGICIDE | X935-1004 X935-1004 | X935-1035 X935-1035 | Spindrift |                   |       | X935-26 X935-26<br>X935-1016   935-1016/1042 | X935-1031 X935-1031/1040 (see above) R9858 Maincote HG86ER R3019 ROPAQUE OP 62 | ROPAQUE OP 96 ULTRA | SUB TOTAL PURE MATERIAL SUB TOTAL COMPONENT PART TOTAL |
| CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D0603<br>D0604<br>D0645                                          | D0689<br>D0660                                                | L1002<br>L1073                   | L1207<br>L1216           | L1224   | L1230  | R3268                                   | R3607                   | R6515<br>R8472         | R8488<br>R8506 | X101-373                | X101-400 | X102-428 | X102-499<br>X102-537           | X102-548 | X190-165      | X190-170<br>X190-172 | X480-39 | Z428A7  | Z4395                                   | Z4959                             | Z971E /<br>Z4555/               | Z4818<br>Z9949                  | X935-100            | X935-1035           | X571-532  | R321H<br>X571-532 | R3537 | X935-26<br>X935-101                          | X935-103<br>R9858<br>R3019                                                     | R328C<br>R8641      | SUB TOTAL<br>SUB TOTAL<br>TOTAL                        |

#### Recycling

#### 2008

Material recovered on site for recycling or sale as secondary product

#### Solvent Recovery

Recycled Recovered D40 Xylene in Recovered D40 Paint Sludge Paint sold Solids D40 in Paint Sludge Xylene in Paint Sludge

| 0  | litres |
|----|--------|
| 0  | litres |
| 0  | litres |
| 0% |        |
| 0  | litres |
| 0  | litres |

#### Solvent Sold

D40 Washings Sold Xylene in Washings Sold

Mixed Washings Sold Xylene Toluene Xylene Toluene

| 0   | litres |
|-----|--------|
| 0.0 | litres |
| 0   | litres |
| 80% |        |
| 20% |        |
| 0   | litres |
| 0   | litres |

#### Recycled wash water

Wash water recycled\*
Wash water solids
Paint recycled
Average Paint Biocide
Biocide in Recycled Water

| 162000<br>6% | kg |
|--------------|----|
| 19440        | kg |
| 0.2%<br>39   | ka |
| 39           | kg |

#### Segregated for Alternative Use

Wash Water Wash water solids Paint Average Paint Biocide Biocide in Water

Plant drainings Drainings solids Paint recycled Average Paint Biocide Biocide in Recycled Water

**Total Biocide** 

| 0    | kg |
|------|----|
| 6%   |    |
| 0    | kg |
| 0.2% |    |
| 0    | kg |
| 0    | kg |
| 50%  |    |
| 0    | kg |
| 0.2% | A. |
| 0    | kg |
| 0    | kg |

#### 2.3.6 SPENDING ON ENVIRONMENTAL PROTECTION

| Training courses/seminars                 | <b>€</b> 800 |
|-------------------------------------------|--------------|
| Testing/monitoring equipment              | 2,468        |
| Annual licences fees: EPA/Local Authority | 6,853        |
| Other Environmental Projects              | 17,000       |
| TOTAL                                     | 27,121       |

#### 2.4 LICENCE SPECIFIC REPORTS

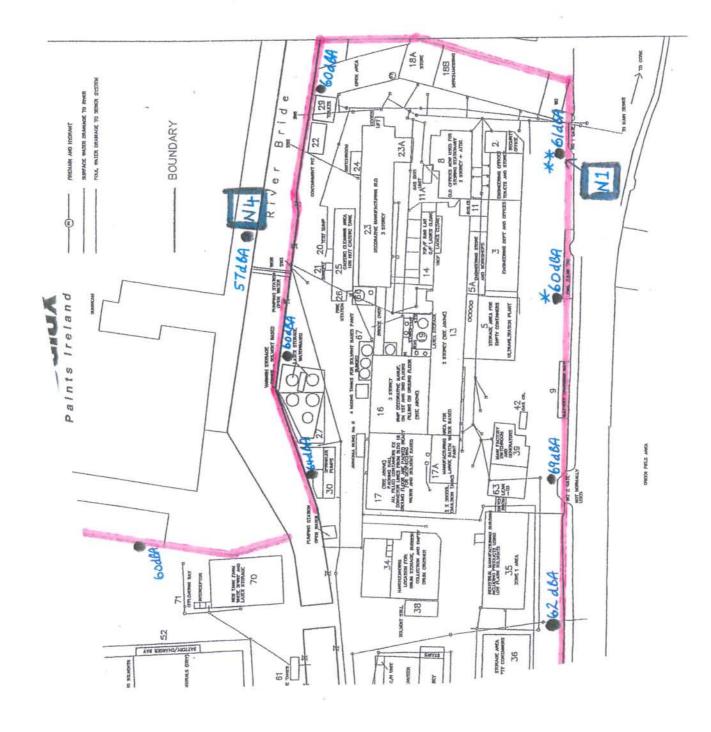
- 2.4.1 Noise Survey
- 2.4.2 Bund Testing
- 2.4.3 Inspection for leaks on all flanges and pipelines
- 2.4.4 Residuals Management Plan
- 2.4.5 Toxicity Testing

#### **2.4.1 NOISE**

#### Condition 9 of our IPC Licence Reg. No. 218

In Section 16 of our licence application we outlined the noise emissions monitored at four (4) locations on our site boundary: N1, N2, N3, and N4 which are locations nearest to our residential and industrial neighbours.

There is no noise emanating from the N2 and N3. That leaves N1 and N4 which are locations nearest to our residential and industrial neighbours.


In Q1 2004 we conducted another noise survey at N1 and N4 and other selected points at the site perimeter. You will see from the findings that they are similar to those taken previously and verifies that the main source of noise at our site boundary is road traffic.

#### **Conclusion:**

We are in full compliance with Condition 9 and certain that the road traffic is the prime source of noise at and outside our boundary.

#### **Attachment:**

We attach drawing 16A for reference purposes only.



NOISE SURVEY CARRIED OUT AT PERIMETER OF SITE AT POINTS LIK TO AFFECT OUR NEAREST NEIGHBOURS THE SURVEY WAS CONDUCTED
BETWEEN 3.00PM AND 4.00PM WHEN
MACHINERY WOULD HAVE BEEN
OPERATING AT OPTIMUM LEVELS

- \* ROAD TRAFFIC AT THIS POINT INCREASED THE NOISE LEVEL TO 68 70 Dba.
- \*\* ROAD TRAFFIC AT THIS POINT INCREASED THE NOISE LEVEL TO 75 - 80 dBA

#### 2.4.2 BUND TESTING

In compliance with Condition 10.4.1 of our licence we submitted an integrity survey of our site bunds and drum parks to the Agency in January 1998.

A survey was carried out in March 2002.

Most recently an independent survey was carried out in 2007 by a civil engineering company and the report is included as Appendix II in the 2007 AER.

We operate a weekly inspection of all site bunds. They are checked for leaks, damage and for contaminated/uncontaminated water.

The discharge of such liquid is subject to a special procedure, which includes a regime of testing.

### 2.4.3 INSPECTION FOR LEAKS ON ALL FLANGES, VALVES AND PIPELINES

In compliance with Condition 10.4.4 we carry out weekly inspections on all pipelines used to carry materials other than water. Results are recorded weekly.

We have no underground tanks or pipelines on the site.

The weekly inspection schedule is important in that it does prevent a drip form becoming a leak by urgent maintenance.

#### 2.4.4 RESIDUALS MANAGEMENT PLAN

We continue to obtain good results from laboratory analysis of groundwater samples from GW1, GW2 and GW3. Analysis was carried out in 2008 and results are included in the appendices to this report.

In accordance with Condition 10.4.3 of our licence we carried out an inspection and hydraulic test on SE1 sewer/foul drain system in November 1999. This inspection was carried out in 2008.

Since the demolition of our solvent borne building (Bldg 23) in 2005, one section of our foul system has now become defunct. We contracted Joseph Lane and Sons to carry out an inspection on the one foul leg/system that is left. This work was carried out in November 2008. Actions arising are included in the objectives for 2009. (See Appendix II attached)

#### 2.4.5 TOXICITY TESTING

Schedule 3 (i) and 3 (ii) Emissions to Sewer calls for toxicity testing of our trade effluent discharged to sewer. The Emissions Limit Value is 25 TU.

With the Agency's agreement dated 08/04/99, we have carried out Microtox analysis of the effluent instead of the full Toxicity testing. Since then all tests indicate that toxicity levels are within the parameters set out in our IPC licence.

The results of the analysis are included in Appendix I.



#### T.E. LABORATORIES LIMITED

Trading as

### Tellab 🌢

Tullow Industrial Estate, Tullow, Co. Carlow Phone: 059-9152881 Fax: 059-9152886

#### CERTIFICATE OF ANALYSIS

Page 1 of 5

Project Description:

Analysis of Aqueous Samples

Attention:

Mr. John O'Connell

Lab ID:

72814 - 72817

Company:

Dulux Paints Ireland Ltd.

Date Sampled: 12.06.2008

Address:

Shandon Works

Commons Road, PO Box 45

Cork

Certificate No:

L/08/1474

Date Rec'd:

13.06.2008

Issue Date:

11.07.2008

Our Ref:

WS-21662, R08/8009

& AL-80068620/S/0/1

**Project Summary:** 

Four samples were analysed for a range of determinands.

Please see page 2-5 for results. Terms & Conditions and methods

used are outlined in the attached appendix.

No. of Pages:

Results page 2-5 plus 4 page appendix

Mr Mark Bowkett Chief Executive

**Technical Manager** 



#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 12.06.2008 Date rec'd: 13.06.2008

Date Analysis Commenced: 13.06.2008

Our ref: WS-21662, R08/8009 & AL-80068620/S/0/1

Certificate No: L/08/1474

|                      | SE1    |
|----------------------|--------|
| Determinand          | 72817  |
| BOD                  | 3      |
| Cadmium              | < 0.03 |
| Chromium             | <0.05  |
| COD                  | <4     |
| Copper               | <0.05  |
| Detergents as MBAS   | <0.05  |
| Iron                 | 0.42   |
| Lead                 | <0.20  |
| Manganese            | <0.03  |
| Oils, Fats & Greases | 18     |
| pH                   | 7.8    |
| Sulphate             | 40     |
| Zinc                 | 0.21   |
| Microtoxins          | ##     |
| VOC's                | ##     |

# Analysis of metals are performed on the filtered sample ## Please see attached.

Results expressed as mg/l (ppm) unless otherwise stated

\*\* = INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests

The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 12.06.2008 Date rec'd: 13.06.2008

Date Analysis Commenced: 13.06.2008

Our ref: WS-21662, R08/8009 & AL-80068620/S/0/1

Certificate No: L/08/1474

|                             | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GW1<br>Stream | GW2<br>Well | GW3<br>Borehole | SE1   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------|-------|
| Determinand                 | Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72814         | 72815       | 72816           | 72817 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                 |       |
| Dichlorodifluoromethane     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Chioromethane               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Vinyl chloride              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Bromomethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Chloroethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Trichlorofluoromethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1-Dichloroethene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Methylene chloride          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <10           | <10         | <10             | <10   |
| trans-1,2-Dichloroethene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1.1-Dichloroethane          | -140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1            | <1          | <1              | <1    |
| cis-1,2-Dichloroethene      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1            | <1          | <1              | <1    |
| Bromochloromethane          | 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1            | <1          | <1              | <1    |
| Chloroform                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1,1-Trichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 5469        |                 |       |
| Carbon tetrachloride        | - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1            | <1          | <1              | <1    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1-Dichloropropene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Benzene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,2-Dichloroethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Trichloroethene             | The same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1            | <1          | <1              | <1    |
| 1,2-Dichloropropane         | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <100          | <100        | <100            | <100  |
| Dibromomethane              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Bromodichloromethane        | TO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1            | <1          | <1              | <1    |
| cis-1,3-Dichloropropene     | 1 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1            | <1          | <1              | <1    |
| Toluene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| trans-1,3-Dichloropropene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1,2-Trichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Tetrachloroethene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,3-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Dibromochloromethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,2-Dibromoethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Chlorobenzene               | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1            | 2           | <1              | <1    |
| Ethylbenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1,1,2-Tetrachloroethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| m+p-Xylene                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| o-Xylene                    | E STATE OF THE STA | <1            | <1          | <1              | <1    |
| Styrene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Bromoform                   | 1 - 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1            | <1          | <1              | <1    |
| iso-Propylbenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| Bromobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,1,2,2-Tetrachloroethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| n-Propylbenzene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,2,3-Trichloropropane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 4-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 2-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,3,5-Trimethylbenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| tert-Butylbenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            |             |                 |       |
| 1,2,4-Trimethylbenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <1          | <1              | <1    |
| sec-Butylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| p-Isopropyltoluene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,3-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,4-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| n-Butylbenzene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1            | <1          | <1              | <1    |
| 1,2 Uichlorobenzene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1            | <1          | <1              | <1    |
| 1,2-Dibromo-3-chloropropane | H .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1            | <1          | <1              | <1    |

Results expressed as ug/l (ppb) unless otherwise stated

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

The above results relate only to the sample tested

# TelLab &

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 12.06.2008 Date rec'd: 13.06.2008

Date Analysis Commenced: 13.06.2008

Our ref: WS-21662, R08/8009 & AL-80068620/S/0/1

Certificate No: L/08/1474

|                            | Sample ID | SE1   |  |
|----------------------------|-----------|-------|--|
| Determinand                | Lab ID    | 72817 |  |
| Microtoxins (++)           |           |       |  |
| Microtox TF Diln (5min)    | ++        | 2     |  |
| Microtox TF Diln (15min)   | ++        | 2     |  |
| Microtox TF result (5min)  | ++        | 8.20  |  |
| Microtox TF result (15min) | ++        | 9.84  |  |
| Microtox EC50 (5min)       | ++        | <2.0  |  |
| Microtox EC50 (15min)      | ++        | <2.0  |  |

<sup>\*\* =</sup> INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests

The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

### Tellab &

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 12.06.2008 Date rec'd: 13.06.2008

Date Analysis Commenced: 13.06.2008

Our ref: WS-21662, R08/8009 & AL-80068620/S/0/1

Certificate No: L/08/1474

|                  | Sample ID | GW1<br>Stream | GW2<br>Well | GW3<br>Borehole |  |
|------------------|-----------|---------------|-------------|-----------------|--|
| Determinand      | Lab ID    | 72814         | 72815       | 72816           |  |
| BOD              | n/a       | <2            | <2          | 2               |  |
| Cadmium (ug/l)   | **        | <0.2          | 0.3         | 0.5             |  |
| Calcium          | **        | 42            | 65          | 65              |  |
| Chloride         | **        | 22            | 25          | 26              |  |
| Chromium (ug/l)  | **        | <1            | <1          | <1              |  |
| COD              | n/a       | <4            | 4           | <4              |  |
| Copper (ug/l)    | ++        | 6.66          | 1.46        | 12.03           |  |
| Lead (ug/l)      | **        | <2            | <2          | <2              |  |
| Magnesium        | **        | 5             | 7           | 9               |  |
| Nickel (ug/l)    | ++        | < 0.5         | < 0.5       | 1.6             |  |
| Nitrate          | **        | 14            | 2           | 6               |  |
| pH               | **        | 7.5           | 7.0         | 7.0             |  |
| Potassium        | **        | 3             | 6           | 4               |  |
| Sodium           | **        | 16            | 19          | 18              |  |
| Sulphate         | **        | 20            | 17          | 20              |  |
| Suspended Solids | **        | 4             | 7           | 10              |  |
| Zinc             | **        | 0.02          | 0.02        | 0.41            |  |
| VOC's            | ++        | ##            | ##          | ##              |  |

# Analysis of metals are performed on the filtered sample ## Please see attached.

Results expressed as mg/l (ppm) unless otherwise stated

\*\* = INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests

The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.



#### T.E. LABORATORIES LIMITED

Trading as

### TelLab 🌢

Tullow Industrial Estate, Tullow, Co. Carlow Phone: 059-9152881 Fax: 059-9152886

#### AMENDED CERTIFICATE OF ANALYSIS REPLACING CERTIFICATE OF ANALYSIS L/08/2829 Page 1 of 4

**Project Description:** 

Analysis of Aqueous Samples

Attention:

Mr. John O'Connell

Lab ID:

76934

Company:

Dulux Paints Ireland Ltd.

Date Sampled: 26.11.2008

Address:

Shandon Works

Commons Road, PO Box 45

Cork

Certificate No:

L/08/2829A

Date Rec'd:

27.11.2008

Issue Date:

23.12.2008

Our Ref:

WS-23091, 150219,80073667/S/0/1

**Project Summary:** 

One sample was analysed for a range of determinands.

Please see page 2-4 for results. Terms & Conditions and methods

used are outlined in the attached appendix.

No. of Pages:

Results page 2-4 plus 4 page appendix

Mr Mark Bowkett **Chief Executive** 

Ms Breda Moore **Technical Manager** 

## TelLab &

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 26.11.2008 Date rec'd: 27.11.2008

Date Analysis Commenced: 27.11.2008 Our ref: WS-23091, 150219,80073667/S/0/1

Certificate No: L/08/2829A

|                      | Sample ID | Trade Effluent |
|----------------------|-----------|----------------|
| Determinand          | Lab ID    | 76934          |
| BOD                  | n/a       | 2              |
| Cadmium #            | **        | < 0.03         |
| Chromium #           | **        | < 0.05         |
| COD                  | n/a       | 9              |
| Copper #             | **        | < 0.05         |
| Detergents as MBAS   | n/a       | < 0.05         |
| Iron#                | **        | 0.15           |
| Lead #               | **        | <0.20          |
| Manganese #          | **        | < 0.03         |
| Oils, Fats & Greases | n/a       | <2             |
| pH                   | **        | 7.5            |
| Sulphate             | **        | 81             |
| Zinc#                | **        | 0.30           |
| Microtoxins          | ++        | ##             |
| VOC's                | ++        | ##             |

# Analysis of metals are performed on the filtered sample ## Please see attached.

Results expressed as mg/l (ppm) unless otherwise stated

\*\* = INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests

The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 26.11.2008 Date rec'd: 27.11.2008

Date Analysis Commenced: 27.11.2008 Our ref: WS-23091, 150219,80073667/S/0/1

Certificate No: L/08/2829A

|                            | Sample ID | Trade Effluent |
|----------------------------|-----------|----------------|
| Determinand                | Lab ID    | 70004          |
| Determinand                | Lab ID    | 76934          |
| 1,1,1,2-Tetrachloroethane  | ug/l      | <1             |
| 1,1,1-Trichloroethane      | ug/l      | <1             |
| 1,1,2,2-Tetrachloroethane  | ug/l      | <1             |
| 1,1,2-Trichloroethane      | ug/l      | <1             |
| 1,1,2-Trichloroethylene    | ug/l      | <1             |
| 1.1-Dichloroethane         | ug/l      | <1             |
| 1,1-Dichloroethylene       | ug/l      | <1             |
| 1,1-Dichloropropene        | ug/l      | <1             |
| 1,2,3-Trichloropropane     | ug/l      | <1             |
| 1,2,4-Trimethylbenzene     | ug/l      | <1             |
| 1,2-dibromoethane          | ug/l      | <1             |
| 1,2-Dichlorobenzene        |           | <1             |
| 1,2-Dichloroethane         | ug/l      | <1             |
|                            | ug/l      |                |
| 1,2-Dichloropropane        | ug/l      | <1             |
| 1,3,5-Trimethylbenzene     | ug/l      | <1             |
| 1,3-Dichlorobenzene        | ug/l      | <1             |
| 1,3-Dichloropropane        | ug/l      | <1             |
| 1,4-Dichlorobenzene        | ug/l      | <1             |
| 2,2-Dichloropropane        | ug/l      | <1             |
| 2-Chlorotoluene            | ug/l      | <1             |
| 4-Chlorotoluene            | ug/l      | <1             |
| Benzene                    | ug/l      | <1             |
| Bromobenzene               | ug/l      | <1             |
| Bromochloromethane         | ug/l      | <1             |
| Bromodichloromethane       | ug/l      | 5              |
| Bromoform                  | ug/l      | 1              |
| Bromomethane               | ug/l      | <1             |
| Carbon tetrachloride       | ug/l      | <1             |
| Chlorobenzene              | ug/l      | <1             |
| Chlorodibromomethane       | ug/l      | 5              |
| Chloroethane               | ug/l      | <1             |
| Chloroform                 | ug/l      | 4              |
| Chloromethane              | ug/l      | <1             |
| Cis-1,2-Dichloroethylene   | ug/l      | <1             |
| Cis-1,3-Dichloropropene    | ug/l      | <1             |
| Dibromomethane             | ug/l      | <1             |
| EthylBenzene               | ug/l      | <1             |
| Meta/Para-Xylene           | ug/l      | <1             |
| Ortho-Xylene               | ug/l      | <1             |
| Styrene                    | ug/l      | <1             |
| Tetrachloroethylene        | ug/l      | <1             |
| Toluene                    | ug/l      | <1             |
| Trans-1,2-Dichloroethylene | ug/l      | <1             |
| Trichlorofluoromethane     | ug/l      | <1             |
| Vinyl chloride monomer     | ug/l      | <1             |
|                            | -3.       |                |

Results expressed as ug/l (ppb) unless otherwise stated

<sup>\*\* =</sup> INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

## TelLab &

#### ANALYSIS OF AQUEOUS SAMPLES.

Date sampled: 26.11.2008 Date rec'd: 27.11.2008

Date Analysis Commenced: 27.11.2008 Our ref: WS-23091, 150219,80073667/S/0/1

Certificate No: L/08/2829A

|                            | Sample ID | Trade Effluent<br>76934 |  |
|----------------------------|-----------|-------------------------|--|
| Determinand                | Lab ID    |                         |  |
| Microtoxins (++)           |           |                         |  |
| Microtox TF Diln (5min)    | ++        | 2                       |  |
| Microtox TF Diln (15min)   | ++        | 2                       |  |
| Microtox TF result (5min)  | ++        | <5.00                   |  |
| Microtox TF result (15min) | ++        | 12.7                    |  |
| Microtox EC50 (5min)       | ++        | <2.0                    |  |
| Microtox EC50 (15min)      | ++        | <2.0                    |  |

<sup>\*\* =</sup> INAB Accredited Tests ++ = Subcontracted Tests n/a = Non-INAB Accredited Tests

The above results relate only to the sample tested

This report should not be regenerated except in full and with the consent of T.E. Laboratories Ltd.

Microtox analysis:

EC50 5/15 min. (as%) = >50% sample concentration.



#### **ENVIRONMENTAL PROTECTION AGENCY** CORK REGIONAL INSPECTORATE INNISCARRA, Co. CORK

Tel: 021-4875540 Fax: 021-4875545

Page 1 of 1

Issued: 08/07/2008

Final Test Report

Report No: 280627 / 1

Client:

OEE Enforcement Admin (Cork)

(formerly

at 1245

Sample No:

280627

Location:

ICI Dulux Paints (Eff. SE1)

Licence No.

P0218-01

218

OH

Issued by: Env. Protection Agency

Description:

Industrial/IPPC Effluent

Flow: 2791LITRES/3.45HRS

Sampled as: Composite

Split sample: No

Sampled: Received:

15/04/2008 15/04/2008

Remarks:

| Determination              | Result  | Units        | Spec<br>Limits       | Status | Method Descriptio<br>EPA Method No |         | Accred |
|----------------------------|---------|--------------|----------------------|--------|------------------------------------|---------|--------|
| рН                         | 7.71    | pH units     | 4.0 - 10.0           |        | Electrometry                       | В3      | Υ      |
| pH measured at:            | 15.4    | °C           |                      |        | Thermometry                        | B3      | N      |
| BOD5 (No inhibition)       | < 1.0   | mg/l         | 3000 or 15<br>kg/day |        | Electrometry                       | B5      | Υ      |
| Chemical Oxygen Demand     | < 10    | mg/I O2      | 6000 or 30<br>kg/day |        | Digest / Colorimetry               | B1,B2   | Υ      |
| Suspended Solids           | 4.0     | mg/l         | 50 or 0.25<br>kg/day |        | Gravimetry                         | B7      | Υ      |
| Sulphate (Wastewater)      | 38.3    | mg/l         | 300                  |        | Ion Chromatography                 | B31     | Y      |
| Anionic Surfactants (MBAS) | 0.02    | mg/l as LS   | 3                    |        | Extraction / Colorimetry           | Sub_con | nt S   |
| Cadmium (High range)       | < 0.000 | 11 mg/l      |                      |        | ICP-MS                             | ICP     | S      |
| Chromium (High range)      | < 0.005 | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Copper (High range)        | 0.007   | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Nickel (High range)        | 0.008   | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Lead (High range)          | < 0.001 | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Zinc (High range)          | 0.218   | mg/l         |                      |        | ICP-MS                             | !CP     | S      |
| Fats,Oils & Greases        | No FOO  | 3 present in | sample               |        | Visual Assessment                  | B28     | N      |
| VOC Screen (Sum by GCMS)   | 6.00    | μg/l         |                      |        | Gas Chromatography                 | Sub_Cor | nt S   |

Comments:

VOCs analysis carried out by EPA Kilkenny, test report KK2800896/1 refers. Anionic detergents (as MBAS) are determined using Lauryl Sulphate as the reference substance. The ratio of LS: SDBS (Sodium Dodecyl Benzene Sulphonate) as per I.S. EN903:1994 is approximately 1:1.9 based on analysis to date. Bodycote Consultus Test Report 5919R refers. Metals analysis carried out by EPA Dublin.

Signed:

Peter Webster, (Regional Chemist)

Test reports relate solely to above sample as received and should only be reprinted in full. Details of test methods, measurement uncertainty and interpretation of status flags on reverse of page. Decimal zero's in BODs mg/l between 10 -100 are a function of the reporting algorithm and are not intended to imply enhanced measurement resolution. Issue 5, Revised 2/02/05





Environmental Protection Agency Regional Inspectorate Seville Lodge, Calian Road, Kilkenny

Report of:

VOC Analysis

Report to:

**EPA Cork** 

Report date:

24/04/08

Location sampled:

Date sampled:

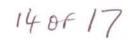
15/04/2008

Date received:

17/04/2008

2802062 Laboratory Ref: Type of sample: Effluent Dulux Sampling point: 230627 EPA Cork Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: **Final Report** Units Parameter 1,1,1,2-Tetrachlerethane µg/l < 0.5 < 0.5 1,1,1-Trichloroethane µg/l 1.1.2,2-Tetrachloroethane µg/l < 0.5 1.1.2-Trichloroethane µg/l < 0.5 1.1-Dichloroethane < 0.5 µg/l 1.1-Dichloroethene < 0.5 µg/l 1,1-Dichloropropene < 0.5 µg/I 1.2.3-Trichlorobenzene < 0.5 µg/l 1,2,3-Trichloropropane < 0.5 µg/l 1,2,4-Trichlorobenzene < 0.5 µg/I 1,2,4-Trimethylbenzene < 0.5 µg/I 1,2-Dibromo-3-Chloropropane < 0.5 µg/l 1,2-Dibromoethene µg/l < 0.5 1,2-Dichlorobenzene < 0.5 µg/I 1,2-Dichloroethane µg/l < 0.5 1,2-Dichloropropane < 0.5 µg/l 1,3,5-Trimethylbenzene < 0.5 µg/I 1,3-Dichlorobenzene µg/I < 0.5 1,3-Dichloropropane µg/l < 0.5 1,4-Dichlorobenzene < 0.5 µg/I 2,2-Dichloropropane < 0.5 µg/I 2-Chlorotoluene µg/l < 0.5 4-Chlorotoluene < 0.5 µg/l 4-Isopropy!toluene µg/l < 0.5

|                                                                             | Laboratory Ref:<br>Type of sample:<br>Sampling point: | Effluent Dulux        |
|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: |                                                       | EPA Cork Final Report |
| rameter                                                                     | Units                                                 |                       |
| Benzene                                                                     | μg/l                                                  | <0.5                  |
| Bromobenzene                                                                | µg/l                                                  | <0.5                  |
| Bromochloromethane                                                          | hâ\l                                                  | <0.5                  |
| Bromodichloromethane                                                        | µg/l                                                  | 2.1                   |
| Bromoform                                                                   | . µg/l                                                | 0.5                   |
| Bromomethane                                                                | µg/l                                                  | <0.5                  |
| c-1,2-Dichloroethene                                                        | µg/l                                                  | <0.5                  |
| c-1,3-Dichloropropene                                                       | hg/l                                                  | <0.5                  |
| Carbon Tetrachloride                                                        | μg/l                                                  | <0.5                  |
| Chlorobenzene                                                               | µg/l                                                  | <0.5                  |
| Chloroform                                                                  | µg/l                                                  | 1.2                   |
| Dibromochloromethane                                                        | µg/l                                                  | 2.7                   |
| Dibromomethane                                                              | µg/l                                                  | <0.5                  |
| Dichlorodifluoromethane                                                     | µg/l                                                  | <0.5                  |
| Ethylbenzene                                                                | µg/l                                                  | <0.5                  |
| Hexachlorobutadiene                                                         | µg/l                                                  | <0.5                  |
| Isopropylbenzene                                                            | μg/l                                                  | <0.5                  |
| m,p-Xylene                                                                  | µg/l                                                  | <0.5                  |
| Methylene Chloride                                                          | ha\l                                                  | <0.5                  |
| Naphthalene                                                                 | hā\l                                                  | <0.5                  |
| n-Butylbenzene                                                              | µg/l                                                  | <0.5                  |
| n-Propylbenzene                                                             | µg/l                                                  | <0.5                  |
| o-Xylene                                                                    | hā\l                                                  | <0.5                  |
| sec-Butylbenzone                                                            | hall hall                                             | <0.5                  |
| Styrene                                                                     | hā\/l                                                 | <0.5                  |
| t-1,2-Dichloroethene                                                        | µg/l                                                  | <0.5                  |
| t-1,3-Dichloropropene                                                       |                                                       |                       |
| tert-Butylbenzene                                                           | µg/l                                                  | <0.5                  |
| *                                                                           | µg/l                                                  | <0.5                  |
| Toluene                                                                     | µg/l                                                  | <0.5                  |
| Trichloroethene                                                             | µg/l                                                  | <0.5                  |
| Trichlorofluoromethane                                                      | μg/l                                                  | <0.5                  |


#### Comments:

- 1) Results highlighted and in bold are outside specified limits.
- All Metals Analysed in the EPA Dublin Laboratory, Cyanide Analysed in EPA Cork Laboratory. Phenols Analysed in the EPA Castlebar Laboratory.
- nm
- nd
- "Not measured"
  "None detected"
  "No time" Time not recorded
  "Too numerous to count"
  "Field measured parameters" nt
- 4) 5) 6) 7) tntc

Signed:

Michael Neill, Regional Chemist

Date:





#### **ENVIRONMENTAL PROTECTION AGENCY CORK REGIONAL INSPECTORATE** INNISCARRA, Co. CORK

Tel: 021-4875540 Fax: 021-4875545

Page 1 of 1

Issued: 26/01/2009

#### Final Test Report

Report No: 282246 / 2

Client:

OEE Enforcement Admin (Cork)

(formerly

at 1115

Sample No:

282246

Location:

ICI Dulux Paints (Eff. SE1)

Licence No.

P0218-01

218

PM

Issued by:

Env. Protection Agency

Description: Industrial/IPPC Effluent

Flow: 1600 L/130mins

Sampled as: Composite

Split sample: Yes

Sampled: Received:

26/11/2008 26/11/2008

Remarks:

| Determination               | Result   | Units        | Spec<br>Limits       | Status | Method Descriptio<br>EPA Method No |         | Accred |
|-----------------------------|----------|--------------|----------------------|--------|------------------------------------|---------|--------|
| pH                          | 7.68     | pH units     | 4.0 - 10.0           |        | Electrometry                       | В3      | Υ      |
| pH measured at:             | 15.5     | °C           |                      |        | Thermometry                        | B3      | N      |
| BOD5 (No inhibition)        | 1.5      | mg/l         | 3000 or 15<br>kg/day |        | Electrometry                       | B5      | Υ      |
| BOD(2d <5°C+5d incub. 20°C) | < 1.0    | mg/l         |                      |        | Electrometry                       | B5      | Y      |
| Chemical Oxygen Demand      | < 10     | mg/l O2      | 6000 or 30<br>kg/day |        | Digest / Colorimetry               | B1,B2   | Υ      |
| Suspended Solids            | 3.2      | mg/l         | 50 or 0.25<br>kg/day |        | Gravimetry                         | B7      | Υ      |
| Sulphate (Wastewater)       | 80.9     | mg/l         | 300                  |        | Ion Chromatography                 | B31     | N      |
| Anionic Surfactants (MBAS)  | 0.04     | mg/l as LS   | 3                    |        | Extraction / Colorimetry           | Sub_con | t S    |
| Cadmium (High range)        | < 0.000  | )1 mg/l      |                      |        | ICP-MS                             | ICP     | S      |
| Chromium (High range)       | 0.020    | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Copper (High range)         | 0.023    | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Nickel (High range)         | 0.058    | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Lead (High range)           | < 0.001  | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Zinc (High range)           | 0.244    | mg/l         |                      |        | ICP-MS                             | ICP     | S      |
| Total Heavy Metals          | 0.345    | mg/l         | 1                    |        | Sum Cd,Cr,Cu,Ni,Pb,Zn              | i       | N      |
| Fats,Oils & Greases         | No visil | ole FOG pres | sent in samp         | le.    | Visual Assessment                  | B28     | N      |
| VOC Screen (Sum by GCMS)    | 13.0     | µg/l         |                      |        | Gas Chromatography                 | Sub_Con | t S    |

Comments:

Metals analysis carried out by EPA Dublin. VOCs analysis carried out by EPA Kilkenny, test report KK2802497/1 refers. Anionic detergents (as MBAS) are determined using Lauryl Sulphate as the reference substance. The ratio of LS: SDBS (Sodium Dodecyl Benzene Sulphonate) as per I.S. EN903:1994 is approximately 1:1.9 based on analysis to date. Bodycote Consultus Test Report 263275 refers. Non-accredited result entered for Sulphate as sample analysed outside 28 days.

Signed:

Peter Webster,

(Regional Chemist)

Test reports relate solely to above sample as received and should only be reprinted in full. Details of test methods, measurement uncertainty and interpretation of status flags on reverse of page. Decimal zero's in BODs mg/l between 10 -100 are a function of the reporting algorithm and are not intended to imply enhanced measurement resolution. Accreditation for B8 Anions has been withdrawn Issue 6, Revised 25/7/08 temporarily pending change of range of measurement.





Environmental Protection Agency Regional Inspectorate Seville Lodge, Callan Road, Kilkenny

Report of:

VOC Analysis

Report to:

**EPA Cork** 

Report date:

19/12/08

Location sampled:

Date sampled:

26/11/2008

Date received:

28/11/2008

|                             | Laboratory Ref:            | 2806289      |  |  |
|-----------------------------|----------------------------|--------------|--|--|
|                             | Type of sample:            |              |  |  |
|                             | Sampling point:            | Dulux SE1    |  |  |
|                             |                            | 585546       |  |  |
|                             | Sampled by:                | EPA Cork     |  |  |
|                             | Time Sampled:              |              |  |  |
| Star                        | t/End - Dates of Analysis: |              |  |  |
|                             | Status of results:         | Final Report |  |  |
| arameter                    | Units                      |              |  |  |
| 1,1,1,2-Tetrachloroethane   | µg/l                       | <0.5         |  |  |
| 1,1,1-Trichloroethane       | µg/l                       | <0.5         |  |  |
| 1,1,2,2-Tetrachloroethane   | µg/l                       | <1           |  |  |
| 1,1,2-Trichloroethane       | μg/l                       | <0.5         |  |  |
| 1,1-Dichloroethane          | μg/l                       | <0.5         |  |  |
| 1,1-Dichloroethene          | µg/l                       | <0.5         |  |  |
| 1,1-Dichloropropene         | μg/l                       | <0.5         |  |  |
| 1,2,3-Trichlorobenzene      | µg/l                       | <0.5         |  |  |
| 1,2,3-Trichloropropane      | µg/l                       | <0.6         |  |  |
| 1,2,4-Trichlorobenzene      | µg/l                       | <0.5         |  |  |
| 1,2,4-Trimethylbenzene      | µg/l                       | <0.5         |  |  |
| 1,2-Dibromo-3-Chloropropane | µg/I                       | <1.3         |  |  |
| 1,2-Dibromoethene           | µg/I                       | <0.5         |  |  |
| 1,2-Dichlorobenzene         | µg/I                       | <0.5         |  |  |
| 1,2-Dichloroethane          | µg/I                       | <0.5         |  |  |
| 1,2-Dichloropropane         | µg/l                       | <0.5         |  |  |
| 1,3,5-Trimethylbenzene      | µg/l                       | <0.5         |  |  |
| 1,3-Dichlorobenzene         | µg/I                       | <0.5         |  |  |
| 1,3-Dichloropropane         | µg/l                       | <0.5         |  |  |
| 1,4-Dichlorobenzene         | µg/l                       | <0.5         |  |  |
| 2,2-Dichloropropane         | µg/l                       | <0.5         |  |  |
| 2-Chlorotoluene             | µg/l                       | <0.5         |  |  |
| 4-Chlorotoluene             | µg/l                       | <0.5         |  |  |
| 4-Isopropyltoluene          | µg/l                       | <0.5         |  |  |

|                         | Laboratory Ref:                | 2806289       |
|-------------------------|--------------------------------|---------------|
|                         | Type of sample:                | Effluent 16 0 |
|                         | Sampling point:                | Dulux SE1     |
|                         | ,                              |               |
|                         | Sampled by:                    | EPA Cork      |
|                         | Time Sampled:                  |               |
|                         | Start/End - Dates of Analysis: |               |
|                         | Status of results:             | Final Report  |
| arameter                | Units                          |               |
| Benzene                 | µg/l                           | <0.5          |
| Bromobenzene            | µg/l                           | <0.5          |
| Bromochloromethane      | µg/l                           | <0.5          |
| Bromodichloromethane    | hâ\I                           | 4.8           |
| Bromoform               | µg/I                           | <0.5          |
| Bromomethane            | μg/l                           | <0.5          |
| c-1,2-Dichloroethene    | hā\l                           | <0.5          |
| c-1,3-Dichloropropene   | µg/l                           | <0.5          |
| Carbon Tetrachloride    | µg/l                           | <0.5          |
| Chlorobenzene           | pg/l                           | <0.5          |
| Chloroform              | μg/l                           | 3.6           |
| Dibromochloromethane    | µg/l                           | 4.6           |
| Dibromomethane          | µg/l                           | <0.5          |
| Dichlorodifluoromethane | µg/l                           | <0.5          |
| Ethylbenzene            | µg/l                           | <0.5          |
| Hexachlorobutadiene     | µg/l                           | <0.5          |
| Isopropylbenzene        | µg/l                           | <0.5          |
| m,p-Xylene              | µg/l                           | <0.5          |
| Methylene Chloride      | µg/l                           | <0.5          |
| Naphthalene             | µg/l                           | <0.5          |
| n-Butylbenzene          | 12                             | <0.5          |
| N2                      | µg/l                           |               |
| n-Propylbenzene         | μg/I                           | <0.5          |
| o-Xylene                | µg/l                           | <0.5          |
| sec-Butylbenzene        | µg/l                           | <0.5          |
| Styrene                 | μg/l                           | <0.5          |
| t-1,2-Dichloroethene    | μg/l                           | <0.5          |
| t-1,3-Dichloropropene   | hā\J                           | <0.5          |
| tert-Butylbenzene       | µg/I                           | <0.5          |
| Toluene                 | μg/l                           | <0.5          |
| Trichloroethene         | μg/l                           | <0.5          |
| Trichlorofluoromethane  | μg/l                           | <0.6          |
| Vinyl Chloride          | µg/l                           | <0.5          |

#### Comments:

- 1) Results highlighted and in bold are outside specified limits.
- All Metals Analysed in the EPA Dublin Laboratory.
   Cyanide Analysed in EPA Cork Laboratory.
   Phenols Analysed in the EPA Castlebar Laboratory.
- nm "Not measured"
- 3) nm "Not measured"
  4) nd "None detected"
  5) nt "No time" Time not recorded
  6) tntc "Too numerous to count"
  7) F "Field measured parameters"

Signed: CL R

Date:

19/12/08

 $\mathcal{W}^{\prime}$  Michael Neill, Regional Chemist

HMENDIX

Joseph Lane & Sons Limited Monahan Road, Cork.

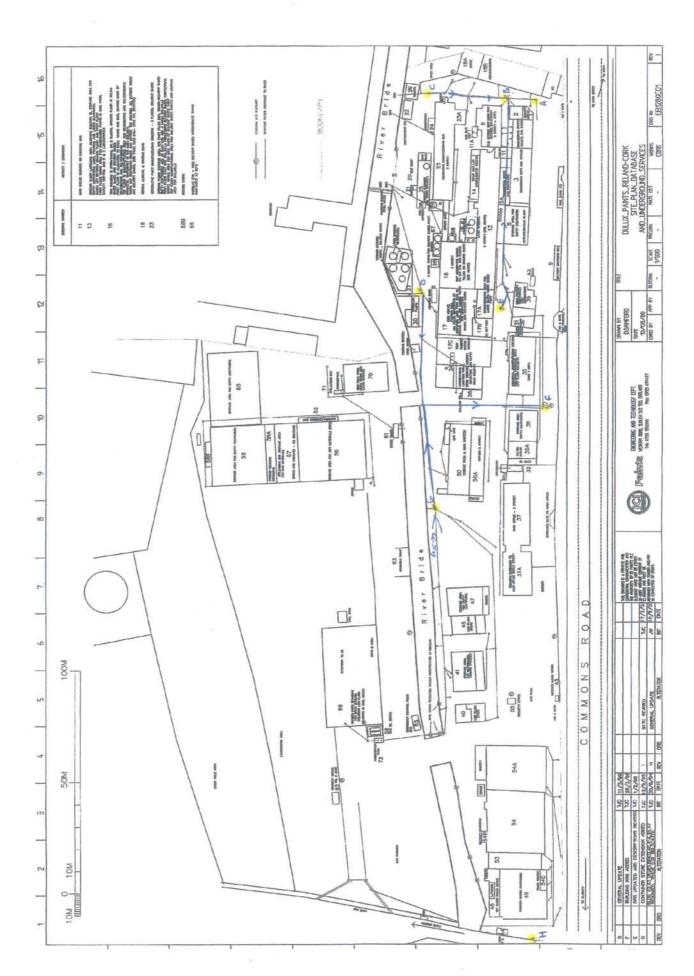
Tel. (021) 496 5233 Fax. (021) 496 5067

Email: info@jlaneandsons.le Web: www.jlaneandsons.le

**Builders & Contractors** 

Dulux

**Drain Test Report** 


Nov 2008

This test report should be read in conjunction with the drawing supplied.

This is a mechanical test were manholes are securely bunged and subsequent manholes are filled with water and left for a period of 16 hours. The water level is checked and marked initially and then rechecked over the 16 hour period.

- Manhole B bunged and manhole C filled, this showed a leakage in the line. The
  pipes may have been damaged in the demolition of the old buildings that where
  located in this area. The area is now redundant of all manufacturing.
- 2. Manhole A bunged and manhole E filled, no leakage occurred in this line.
- 3. Manhole F bunged and manhole D filled, no leakage occurred in this line.
- 4. Manhole F bunged and manhole G filled, no leakage occurred in this line.
- Manhole F bunged and manhole H filled, this showed signs of leakage but is not located in a manufacturing area. The pipe maybe damaged close to manhole H as there are signs of construction work completed in this area i.e. bund walls attached to Building 49

Dave Walsh Joseph Lane and Sons

