JOHN ENGLISH

(WOODFARM FENCING SUPPLIES LTD)

ANNUAL ENVIRONMENTAL REPORT 2013

IPC Reg. No. P0352-01

March 2014

INTRODUCTION

John English operates a wood processing and timber treatment plant at Clonbrock, Co. Galway. The plant is trading as Woodfarm Fencing Supplies Ltd and is under the operational control of Managing Director Jason English, son of John English. John and his wife Mary English are also directors of the company. The IPC license requirements are managed by Jane English (daughter of John) who is Environmental Manager at the plant.

In 2013 the plant produced approximately 300 tones per week of treated fencing posts. The plant operates from 8.30 hrs to 18.00 hrs, five days per week. Woodfarm Fencing Supplies Ltd employs 14 full time staff from the locality.

The sawmill is equipped with a number of saws, a de-barker and a pointer. The plant uses Osmose Celcure AC-500 for the treatment of timber on site. Currently there are two treatment vessels installed, each with a capacity of 18.6 m³. These treatment vessels are supplied by a number of tanks for the storage and mixing tanks. One of the treatment vessels is self-bunded, while the second treatment vessel and storage tanks rely on the bunding capacity of the building. The total bund capacity of this 460 m² building is 30.2 m³. This excludes the self-bunded treatment vessel.

This building was constructed as a specific requirement of the IPC license. Treated timber is stored indoors for at least 48hours, (dependant on weather conditions) before being placed on a concrete yard.

EMISSIONS DATA

Waste management

Solid Waste Produced in 2013

Waste Material	EWC Code	Amount kg	Waste Contractor
General Waste	20 03 01	3,000	East Galway Waste Disposal Walsh Waste
*Treatment Plant Sludge	03 02 04	440	Indaver Ireland
Metal Waste	20 01 40	1270	The Hammond Lane Metal Co. Ltd
Empty ink cartridges - non refillable (office waste)	08 03 13	0.45	HP Planet Partners

Water usage

Rainwater used for treatment plant. The facility now has a 55m ³ storage facility for rainwater.

Environmental incidents and complaints

None reported in 2013.

Spending on Environmental Protection, 2013

Company time devoted to environmental management	10,000
Environmental Consultants , Laboratory Analysis, Bund Testing	4,968
Hazardous Waste treatment	365
Gerneral Waste disposal	870
E.P.A. Charge	3,139
Total	€19,342

SCHEDULE OF OBJECTIVES & TARGETS 2014

1. Objective

Maintain an Environmental Management System for the Site

Target

Maintain a working EMS system to the satisfaction of the EPA. Revise existing EMS and relevant documents.

Responsibility

Jane English, Environmental Manager, will have responsibility for meeting this objective.

2. Objective

Assess all operations and review all practicable options for the use of cleaner technology, cleaner production and reduction and minimisation of waste. To initiate waste reduction projects where practicable.

Target

Identify opportunities for cleaner production and prepare programs to avail of such opportunities.

Responsibility

Jane English, Environmental Manager, will have responsibility for meeting this objective

3. Objective

To demonstrate that all bunded structures and tanks on-site are water tight and resistant to penetration by materials stored therein.

Target

To carry out integrity tests on all bunds and report findings to EPA every three years.

Responsibility

Jane English, Environmental Manager, will have responsibility for meeting this objective

4. Objective

To ensure all treated timber is stored on impermeable surfaces.

Target

To ensure all treated timber is stored on impermeable surfaces to ensure ground water is protected from contamination

Responsibility

Jane English, Environmental Manager, will have responsibility for meeting this objective

5. Objective

To monitor the environment surrounding the plant for potential pollutants arising from the manufacturing activity and to take corrective action should such pollutants be detected.

Target

To monitor groundwater and surface water for contamination on site, in accordance with EPA requirements

Responsibility

Jane English, Environmental Manager, will have responsibility for meeting this objective

Environmental Management Programme 2013

Project 1/2013

To continue to develop an Environmental Management System (EMS).

Relationship to objectives and targets:

This is in line with John English EMP objective number 1.

Reason for undertaking project:

The maintenance of an EMS is necessary to fulfil Conditions 2.1 to 2.7 of the John English's IPC licence. It is also company policy to operate an Environmental Management System

Target:

Continue to improve Environmental Management system

Project Summary:

- Set schedule of objectives and targets
- Meet environmental management programme
- Maintain and improve environmental management documentation system
- Maintain corrective action procedures
- Maintain an awareness and training programme
- Maintain programme for public information
- Prepare annual environmental reports

Designation of Responsibility:

Jane English is responsible for implementation of this project.

Time Frame:

Review EMS procedures and documents; prepare any outstanding procedures which need to be implemented. In addition Jane English will;

- Maintain a Public Information file
- Identify training needs of workers which can have a significant impact on the environment and provide these workers with training
- Implement all environmental programs outlined in this document

This will be completed by December 2013.

D 1 10/00/10	
Project 2/2013	Groundwater and surface watering monitoring on site.
Relationship to objectives and targets:	This project is in line with John English's EMP Objective number 5, To monitor groundwater and surface water for contamination.
Reason for undertaking project:	This project is specifically required under condition 8.3.1 of the IPC licence.
Target:	To carry out annual monitoring groundwater and surface water on site
Project Summary:	Carry out annual surface and groundwater monitoring onsite and submit results to EPA
Designation of Responsibility:	Jane English, Environmental Manager
Time Frame:	Results of groundwater and surface water on site to be submitted to the EPA when available.

Project 3/2013	Management of Treatment Plant Sludge
Relationship to objectives and targets:	This is in line with John English EMP objective number 1 and 5
Reason for undertaking project:	This project is specifically required under condition 8.3.1 of the IPC licence.
Target:	Manage treatment plant sludge so that it does not impact on the local environment
Project Summary:	Ensure all treatment plant sludge is stored in bunded areas in clearly labelled drums. Ship offsite all stored treatment plant sludge to permitted waste contractor
Designation of Responsibility:	Jane English, Environmental Manager
Time Frame:	Progress will be reported in AER 2013

Project 4/2013	Establish record keeping inspection of leaks from flanges and valves on pipes and equipment associated with treatment plant.

Relationship to objectives and targets:

This is in line with John English 2005 EMP objective number 2.

Reason for undertaking project:

This project is specifically required under condition 8.4.8 of the IPC licence.

Target: To inspect for leaks on all flanges and valves on overground

pipes carrying tanalith e solution. To repair these leaks and to

record such maintenance.

Project Summary: Maintain inspection records of flanges and valves on a weekly

basis and record any leaks. Follow up with repairs of such leaks

and document maintenance

Designation of Responsibility:

Jane English, Environmental Manager

Time Frame: Progress will be reported in AER 2013

2013 ENVIRONMENTAL MANAGEMENT PROGRAMME REPORT

Project 1/2013

Establish an Environmental Management System (EMS).

Progress: Jane English has in operation an environmental management documentation system. This includes incident and corrective action procedures, awareness and training programme, a complaints procedure, an emergency response procedure and a programme for public information. In the last year John English/Woodfarm Fencing Supplies Ltd endeavoured to meet all of their IPC requirements and to implement their environmental management programmes.

Project 2/2013

To carry out annual monitoring of groundwater and surface water on site

Progress: Hydrogeological Investigation Report re Technical Amendment A was submitted to the EPA through ALDER on 04/12/2013.

Jane English, Environmental Manager was approved an extension by the EPA for submission of water results for 2013 so that sampling could be carried out using the information and parameters achieved through the work of the Hydrogeological Investigation Report. These results will be submitted with AER 2013

Project 3/2013

Management of treatment plant sludge

Progress; Treatment plant sludge was stored in 210L clearly labelled steel combi drums.

Total of 440 kg of Treatment plant sludge was shipped off site by Indaver Ireland in July 2013

Project 4/2013

Establish record keeping inspection of leaks from flanges and valves on pipes and equipment associated with treatment plant

Progress; A list of all flanges and valves on over ground pipes carrying wood treatment solution has been prepared

A plant inspection and maintenance record sheet/folder is completed on a weekly basis and is kept up to date. Any leaks/maintenance is acted on immediately and repaired.

We maintain records of the annual external plant programme and record any maintenance.

Environmental Management Programme 2014

Project 1/2014 To continue to develop an Environmental Management System (EMS).

and targets:

Relationship to objectives This is in line with John English EMP objective number 1.

Reason for undertaking project:

The maintenance of an EMS is necessary to fulfil Conditions 2.1 to 2.7 of the John English's IPC licence

It is also company policy to operate an environmental management system.

Target:

Complete revision of Environmental Management System.

Project Summary:

- Compliance of 48 hour rule to be highlighted
- Include fuel and chemical handling procedures to EMS
- Staff to be trained accordingly on the above
- Maintain & update environmental management documentation system and files
- Add method statements to EMS so that representative samples are always collected - no matter who collects them
- Signage to be put in place in treatment area re 48 hour procedure
- Maintain public information file
- Prepare annual environmental reports

Designation of Responsibility: Time Frame:

Jane English is responsible for implementation of this project.

This will be completed by 31/08/2014

Project 2/2014	Groundwater and curface watering manitoring on cita
Project 2/2014	Groundwater and surface watering monitoring on site.
Relationship to objectives and targets:	This project is in line with John English's EMP Objective number 5, To monitor groundwater and surface water for contamination.
Reason for undertaking project:	This project is specifically required under condition 8.3.1 of the IPC licence.
Target:	To carry out annual monitoring groundwater and surface water on site using the recommendations/parameters of the Hydrogeological Investigation Report Nov 2013
Project Summary:	Carry out annual surface and groundwater monitoring on site in accordance with EPA requirements and submit results to EPA
Designation of Responsibility:	Jane English is responsible for implementation of this project.
Time Frame:	Results of groundwater and surface water on site to be submitted to the EPA through ALDER in 2014

Project 3/2014	Management of treatment plant sludge
Relationship to objectives and targets:	This is in line with John English 2005 EMP objective number 1 and 5.
Reason for undertaking project:	This project is specifically required under condition 8.3.1 the IPC licence
Target:	Manage treatment plant sludge so that it does not impact on the local environment.
Project Summary:	Ensure that all treatment plant sludge will be stored in bunded areas in clearly labelled drums.
	Ship offsite all stored treatment plant sludge to permitted waste contractor
Designation of Responsibility:	Jane English, Environmental Manager
Time Frame:	Progress will be reported in AER 2014

Project 4/2014.	Maintain record keeping inspection of leaks from flanges and valves on pipes and equipment associated with treatment plant.

Relationship to objectives and targets:

This is in line with John English EMP objective number 2.

Reason for undertaking

project:

This project is specifically required under condition 8.4.8 of the IPC licence.

Target: To inspect for leaks on all flanges and valves on over ground

pipes carrying treatment solution. To repair these leaks and to

record such maintenance.

Project Summary: Maintain inspection records of flanges and valves on a weekly

basis and record any leaks.

Follow up with repairs of such leaks and document maintenance.

Designation of Responsibility:

Jane English, Environmental Manager

Time Frame: Progress will be reported in AER 2014

Project 5/2014.	Bund Integrity Assessment
Relationship to objectives and targets:	This is in line with John English EMP objective number 5
Reason for undertaking project:	This project is specifically required under condition 8.4.3 of the IPC licence which requires that the licensee shall test the integrity and water tightness of all the bunded structures every three years.
Target:	To demonstrate that all bunded structures on-site are water tight and resistant to penetration by any materials stored therein.
	A robust integrity test on bunded shed, sump, surrounding concrete apron and any construction joints to be carried out and report submitting to the EPA by end year 2014
	Investigation into foaming and leakage around self-bunded pressure vessel door to be carried out to find our if this leakage is a normal part of running process or if it can be eliminated - if the latter is possible then maintenance works to be carried out to prevent this leakage. This project to be completed by end 2014.
Project Summary:	Carry out robust integrity test on bunded shed by end year 2014
	Carry out investigation/maintenance works if possible on self-bunded vessel door by end year 2014
Designation of Responsibility:	Jane English, Environmental Manager
Time Frame:	Progress will be reported in AER 2014

Dear Jane.

The Agency has reviewed your submission LR006391, "Technical Amendment A" in relation to the hydrogeological assessment carried out to demonstrate compliance with the EC Environmental Objectives (Groundwater) Regulations 2010 as amended as required by Condition 8.3.2 (Amendment A) of IPPC Licence P0352-01.

Your request to use the proposed water quality monitoring parameter suite set out in Table 13, page 24 of the report (see attached), when carrying out the next monitoring round is noted and I can confirm that **the EPA is in agreement with this**.

With regard to the measures/recommendations outlined in Section 8 of the hydrogeological report, please provide details of when the actions will be completed; in particular integrity testing of bunds and concrete apron, etc, installation of a new borehole, installation of an oil interceptor. Please provide the timeframes for completion of the various tasks to me **by 6th January 2014.**

Yours sincerely, Helen Boyce, Inspector

Office of Environmental Enforcement, Castlebar

Table 13 Proposed Water Quality Monitoring Parameter Suite

Туре	Parameter	Monitoring location &
		frequency
Field	pH; temperature; electrical conductivity;	Annual at BH01, BH02 and
Parameters	Groundwater level	SW03
Laboratory Analys	is	
COCs	Ammonia, Arsenic, Benzyl Ammonium Chloride,	Annual at BH01, BH02 and
	Boron, Chromium, Copper, Extractable	SW03.
	Petroleum Hydocarbon (EPH), Lindane,	
	Propiconazole, Tebuconazole	Note 1: COC status of EPH,
Major ions	Alkalinity, Chloride, Sulphate, Nitrate, Calcium,	Lindane, propiconazole,
	Sodium, Magnesium, Potassium	tebuconazole, arsenic and
Physico-	pH; Electrical Conductivity; Total Phosphorus;	chromium to be reviewed
chemical	Molybdate Reactive Phorphorus, Nitrite, Total	after 2 no. monitoring rounds.
	Organic Carbon	
Microbiological	Total Coliforms & faecal Coliforms (E. coli)	
Trace Metals	Iron; Manganese	

Ref: 1053 WaterQualityJan2014 forIPC2013Requirements

EurGeol. Peter Conroy Shantraud Killaloe Co. Clare Tel: 085 77 86 864

Email: peadar oconaire@yahoo.co.uk

FAO: Ms. Jane EnglishWoodfarm Fencing Ahascragh
Ballinasloe
Co. Galway

21 February 2014

RE: IPC P0352-01 Water Quality Monitoring on 10/01/2014, to satisfy 2013 IPC water quality monitoring requirement

Dear Jane,

I have received the results of the laboratory analysis carried out by the INAB accredited laboratory Complete Laboratory Solutions (CLS), Rosmuc, Co. Galway, on the groundwater sample (BH01) and surface water sample (SW03) collected at the WFS IPC site on 10/01/2014. The data are summarised in the attached table. The original laboratory certificates are also attached.

The samples were analysed for the parameters set out in Section 7.4, Table 13 of the Hydrogeological Assessment Report (Conroy 2013), which was prepared in line with the requirements of Technical Ammendment A of IPC License P0352-01. These included the contaminants of concern identified in Table 13 of that report and a number of additional parameters recommended by the EPA Guidance document "Guidance on the Authorisation of Discharges to Groundwater" (2011).

Site specific compliance thresholds were recommended for groundwater and surface water for the various contaminants of concern in Section 7.3, Table 12 of the Hydrogeological Assessment Report (Conroy 2013). The various compliance thresholds are reproduced in the attached summary table.

Assessment of the water quality results from 10/01/2014

Results for several of the additional parameters monitored suggest that the groundwater and surface water samples may have been contaminated by organic matter:

- The potassium:sodium ratio (K:Na) exceeded 0.3 in both samples. Geological Survey of Ireland experience suggests that values above 0.3 may indicate contamination by organic matter;
- Orthophosphate exceeded the relevant Surface Water EQS in the SW03 sample. Organic matter is a potential source of phosphorous.
- Fecal coliforms were detected in the SW03 sample. The presence of faecal coliforms indicates sewage and/or animal excrement contamination.
- Ammonia was detectable in the BH01 groundwater sample, and nitrate concentrations were low in both samples. These results are suggestive of anoxic conditions, which would result from the breakdown of dissolved organic matter in the water.
- Iron and manganese were above background in both samples. Reducing conditions
 resulting from the breakdown of dissolved organic matter in the water could lead to the
 reductive dissolution of iron and manganese oxides naturally present in the soil. This in
 turn would be likely to lead to above background concentrations of dissolved iron and
 manganese in water.
- It is considered that agricultural activities in the surrounding area are the most likely source of the organic matter contamination suggested by the data.

The analytical results for the contaminants of concern have been compared to their respective compliance thresholds. Where a contaminant of concern exceeds its compliance threshold the value is presented in bold, red font in the attached summary table. The data were assessed as follows:

- The measured concentrations of the contaminants of concern arsenic, boron, chromium, copper, ammonia, propiconazole, and tebuconazole were below their respective compliance thresholds.
- The contaminant of concern benzalkonium chloride measured 61 ug/l in the groundwater sample, which exceeded the compliance threshold of 0.1 ug/l. It was not detected in the surface water sample. This parameter is a component of Celcure AC 500, which is currently in use at the site. The compound is known to biodegrade rapidly in groundwater, which means that its detection in groundwater above the site compliance threshold is a potential indicator of ongoing contaminant release from the site via the groundwater pathway.
- The contaminant of concern lindane measured 0.81 ug/l in the groundwater sample, which exceeded the compliance threshold of 0.1 ug/l. It was not detected in the surface water sample. This parameter is a component of Protim Ground Contact, which was used on the site historically. Its detection in groundwater above the site compliance threshold is a potential indicator of residual subsoil contamination beneath the site by Protim Ground Contact owing to historical, accidental releases.
- The contaminant of concern Extractable Petroleum Hydrocarbons (EPH), as represented by the analytical parameters Petrol Range Organics (PRO), and Diesel Range and Lube Oil, was detected in both the surface water and the groundwater at concentrations above the 10 ug/l threshold. The PRO fraction was present in the groundwater sample only and measured 533 ug/l. The Diesel Range and Lube Oil Fraction was detected in the groundwater and surface water at concentrations of 2,923 ug/l and 712 ug/l respectively. The laboratory report states that the Diesel Range and Lube Oil results possibly indicate the presence of mineral oil in both samples. EPH was a component of the

Protim Ground Contact solution, which was used on the site historically. It is also a component of the diesel fuel currently used on site. Its detection in groundwater above the site compliance threshold is a potential indicator of residual subsoil contamination beneath the site by Protim Ground Contact owing to historical, accidental releases. Alternatively or in addition, it is a potential indicator of historical and/or recent accidental releases of diesel fuel at the site.

Recommendations

It is recommended that further testing be carried out to confirm whether or not the contaminants of concern benzalkonium chloride, lindane and EPH are present in the groundwater beneath the site, and whether or not the contaminant of concern EPH is present in surface water at the site.

It is proposed that the routine water quality monitoring for 2014 for IPC License P0352-01, scheduled for July 2014 is appropriate for the recommended confirmatory monitoring. This will need to be agreed with the EPA.

Sign Off

I hope this assessment is satisfactory for you. If you have any questions or queries regarding the assessment and/or the contents of the attached table, please do not hesitate to contact me.

Yours sincerely,

EurGeol. Peter Conroy PGeo., M.Sc.,

B.Sc. Hydrogeologist. Encl: Table entitled "Groundwater and Surface Water Quality Monitoring January 2014". CLS Laboratory Certificates for sample analysis for BH01 & SW01 for samples from 10/01/2014.

Contact Cont	Sample Name									BH01	SW03	Comment on Results Jan 2014
Contact Cont		1										
Las Desgret No.	Consultant									P Conroy	P Conroy	
Mathematic North Marker Ma	Analysing Laboratory									CLS	CLS	
Last Sample Residence of the Complete of the C	Lab Report No.									216910	216912	
Service Page	Lab Sample No.									493628	493630	
Same Paris	Lab Sample Receipt Date									10/01/2014	10/01/2014	
Sample from the mode of the control											Surface	
Second S	Sample Type									Groundwater	Water	
Company Comp	Sample Name									BH01	SW03	
Second S	Sample Date									10/01/2014	10/01/2014	
Second S												
Conclusion Con							Groundwater	Surface Water MAC-	Drinking Water			
Company Comp		Units	Site Complian	ce Thresholds	Lab Limit of	Lab Limit of	Threshold					
Column C					Quantitation	Detection						
Post			Groundwater	Water	(LOQ)	(LOD)	(GSI guideline)	of 2012	SI 278 of 2007			
Part	Calculated Parameters											
Interface Page Page												
National	Potassium:Sodium meq/l Ratio (K:Na)	n/a					(0.3)			0.5	0.8	organic matter. Agriculture is most likely source.
National												
Physics Chemical Parameters	L	" 0								4.5.		
Grammeber Frederick Considerative (1 19 19 19 19 19 19 19 19 19 19 19 19 19		mg/I CaCO3								421	200	significant runoff component dilutes any groundwater baseflow.
Field File of Monthson (Price of	•											
Field Temperature			ļ									
Field Temperature Deg. C												
Process												
Select Field Industriety (20 deg () Select Field Industriety (20 deg () Select Field I												
	pH							>6 & <9				
Orthoplophate mg/l							800		2500.00		254	
Total Organic Carbon mg/l											1	
Microbiogical Parameters							0.035	0.035 (Good Status)				High orthophosphate in surface water likely to be due to organic matter.
Package Pack		mg/I			1				NAC	6.06	3	
React Colforms du/JOOm	Microbiological Parameters											
Total Colforms	- 10 %	5 /400 1								4.0		
Major Catolons (Lec. Ca, Mg, Na, K, NH4)												Agriculture is a potential source.
Dissolved Magnesium (Kg) mg/l		cfu/100ml							0	30	1040	
Dissolved Magnesium (Mg)												
Dissolved Potassium (Na) mg/l m											+	
Dissolved Potassium (K) mg/l mg												
Ammonia (as N) mg/l 0.175 0.065 0.005 0.175 0.065 (Good Status) 0.23 0.152 <0.005							150		200			
Major Anions (HCO3, CI, SO4, NO3)			0.475	0.005			0.175	0.005/0	0.22			
Akalinity total mg/l CaCO3 10 2 24 250 19.6 22.3 22		mg/I	0.175	0.065	0.005		0.1/5	0.065 (G00d Status)	0.23	0.152	<0.005	
Chloride (Cl) mg/l 2 2 24 250 19.6 22.3 Sulphate (SO4) mg/l 5 2 187.5 25 187.5 25 187.5 25 1.23 Low nitrate and detectable ammonia suggests anoxic groundwater conditions Mitrate (NO3) mg/l 0.44 37.5 50 3.12 1.23 Low nitrate and detectable ammonia suggests anoxic groundwater conditions Mitrate as NO2 mg/l 0.017 0.375 0.5 0.5 0.017 0.017		/I C CCC			40					275	200	
Sulphate (SO4) mg/l							2.4		250			
Nitrate (NO3)			1			2						
Trace lons	Suipnate (SO4)	mg/ı	1		5	2	187.5		250	4.32	3.23	
Trace lons	Nitrate (NO3)	mg/l			0.44		37 5		50	2 17	1 22	Low nitrate and detectable ammonia suggests anoxic groundwater conditions
Nitrite as NO2 mg/l 0.017 0.375 0.5 <0.017 <0.017 Trace Metals Dissolved Arsenic ug/l 7.5 25 0.5 7.5 25 10 5 12 Dissolved Boron ug/l 750 10 750 100 559 110 Chromium (total dissolved) ug/l 37.5 32 0.5 37.5 3.4 (VI) + 4.7 (III) 50 1 0.9 Dissolved Copper ug/l 1500 30 1 1500 30 (Hardness > 100) 2000 10 12 Dissolved Iron ug/l 1 500 30 1 100 Dissolved Iron ug/l 1 500 30 1 1000 30 (Hardness > 100) 2000 122 1412 Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under anoxic conditions		mg/i			0.44		37.3		30	3.12	1.23	Low metate and detectable animonia suggests anome groundwater conditions
Trace Metals		mg/l			0.017		0 27F		٥٢	ZO 017	<0.017	
Dissolved Arsenic		mg/i			0.017		0.373		0.5	<0.017	<0.017	
Dissolved Boron		/I	7.5	35	0.5		7 -	25	40	-	12	
Chromium (total dissolved) Ug/l 37.5 32 0.5 37.5 3.4 (VI) + 4.7 (III) 50 1 0.9 Chromium 6 total /Hexavalent chromium Ug/l Dissolved Copper Ug/l 1500 30 1 1500 30 1 1500 30 1 1500 30 14 1500 30 1500 30 16 16 17 18 18 18 18 18 18 18 18 18		ug/I		25				25				
Chromium 6 total /Hexavalent chromium ug/l				22				2 4 (\/ \) + 4 7 / \				
Dissolved Copper ug/l 1500 30 1 1500 30 (Hardness > 100) 2000 10 12 Above background iron possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Dissolved Iron			3/.5	32	0.5						+	
Above background iron possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background iron possibly due to reductive dissolution of oxides under anoxic conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under		ug/I	1500	20	1							
Dissolved Iron ug/l 10 200 1222 1412 conditions due to organic matter contamination Above background manganese possibly due to reductive dissolution of oxides under	Dissolved Copper	ug/1	1500	30	1		1200	20 (Liginiess > 100)	2000	10	12	Above background iron possibly due to reductive discolution of evides under anguing
Above background manganese possibly due to reductive dissolution of oxides under	Dissolved Iron	ug/l			10				200	1222	1412	
	DISSOIVER HOH	ч6/ і	1		10				200	1222	1712	
DISSUMED MADINATION TO A TOTAL TO A T	Dissolved Manganese	ug/l	1	ĺ	5				50	2064	423	anoxic conditions due to organic matter contamination

Sample Name	1	1	1	ı					BH01	SW03	Comment on Results Jan 2014
запри наше									PUOT	3003	Comment on Results Jan 2014
Consultant									P Conroy	P Conroy	
Analysing Laboratory									CLS	CLS	
Lab Report No.									216910	216912	
Lab Sample No.									493628	493630	
Lab Sample Receipt Date									10/01/2014	10/01/2014	
										Surface	
Sample Type									Groundwater	Water	
Sample Name									BH01	SW03	
Sample Date									10/01/2014	10/01/2014	
						Groundwater	Surface Water MAC-	Drinking Water			
	Units	Site Complian		Lab Limit of	Lab Limit of	Threshold	EQS (Inland SW)	Standard			
			Surface	Quantitation	Detection	SI 9 of 2010 or	SI 272 of 2009 & 327				
		Groundwater	Water	(LOQ)	(LOD)	(GSI guideline)	of 2012	SI 278 of 2007			
Pesticides/Biocides/Fungicides											
											Component of Celcure AC 500. Rapid biodegradation means that its detection in
											groundwater above the site compliance threshold is a potential indicator of ongoing
	,	0.4		10							contaminant release from the site.
Benzalkonium chloride (8001-54-5)	ug/l	0.1	0.1	10				0.1	61	<0.1	Needs confirmation over several monitoring rounds.
Propiconazole and tebuconazole in waters	ug/l	0.1	0.1	0.02 - 0.5				0.1	<0.1	<0.1	Component in Protim Ground Contact. Potential indicator of residual contamination in
											the subsoil.
Lindane (gamma-HCH)	ug/l	0.1	0.1	0.01		0.075		0.1	0.81	0	Needs confirmation over several monitoring rounds.
alpha-HCH	ug/l	0.1	0.1	0.01		3.373		0.1	0.014	0	
Extractable Petroleum Hydrocarbons	J,										
PRO Water (C5-C12) by GC-FID	ug/l	10	10	10					533	<10	Commonwealth of Doubles Common Combon and discolar Doubles (1)
											Components of Protim Ground Contact and diesel. Potential indicator of residual Protim or diesel contamination in the subsoil or recent accidental release of diesel.
									2923 possible	712 possible	Needs confirmation over several monitoring rounds.
Diesel Range & Lube Oil (C8-C40) by GC-FID	ug/l	10	10	10					mineral oil	mineral oil	ivecus confinination over several monitoring rounds.

Complete Laboratory Solutions
Ros Muc, Co. Galway.
[Tel] 091 574355
[Fax] 091 574356
[Email] services@cls.ie
[web] www.completelabsolutions.com

Client : Supplement to Report No. : 216910

Peter Conroy PGeo., MSc, Hydrogeologist Date of Receipt : 10/01/2014

Shantraud Start Date of Analysis : 10/01/2014

Killaloe Date of Report : 06/02/2014

Co. Clare Order Number :

Sample taken by : Client

CERTIFICATE OF ANALYSIS

Lab No	Sample Description	Test	Result	Units
493628	1053.	рН	6.6	pH Units
	GroundWater	Conductivity @20C	637	uS/cm
	BH 01. 10/1/14	Alkalinity, total	375	mg/l CaCO3
		Total Phosphorus as P	0.15	mg/l
		Chloride	19.6	mg/l
		Nitrate as NO3	3.122	mg/l
		Nitrite as NO2	<0.017	mg/l
		Sodium, dissolved	11	mg/l
		Calcium, dissolved	154	mg/l Ca
		Faecal Coliforms (Filtration)	< 10	cfu/100ml
		Sulphate	4.32	mg/l
		Pesticides (OCP) (see attached OCP report)	gamma-HCH 810ng/l, alpha-HCH 14ng/l	ng/l
		Orthophosphate as PO4-P	0.024	mg/l
		Ammonia as N	0.152	mg/l
		Propiconazole & Tebuconazole in waters	<0.1	ug/l
		Iron, dissolved	1222	ug/l
		Manganese, dissolved	2064	ug/l
		Copper, dissolved	10	ug/l
		Chromium, dissolved	1	ug/l
		Arsenic, dissolved	5	ug/l
		Magnesium, dissolved	9	mg/l
		Potassium, dissolved	10	mg/l
		Boron, dissolved	559	ug/l
		Benzalkonium chloride [8001-54-5]	61.0	ug/l
		PRO Water (C5-C12) by GC-FID	533	ug/l
		TOC	6.06	mg/l
		Total Coliforms (Filtration) (Environmental Waters)	30	cfu/100ml
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	2923 Possible Mineral Oil*	ug/l

* Note: The comment expressed here is an interpretation and is not INAB accredited

ISO 17025

NAB
ACCREDITED

TESTING

DETAILED IN SCOPE REG NO. 1081

Approved by:

Rita McGrath Environmental Scientist

Test	Specification	Subcontracted	CLS 17025 Status	Sub 17025 Status	
Total Phosphorus as P	CLS 151	No	Yes	No	
Total Coliforms (Filtration) (Environmental	CLS 16	No	No	No	
Waters) TOC	CLS 150	No	Yes	No	
Sulphate	Konelab CLS 88	No	No	No	
Sodium, dissolved	ICP-MS CLS129	No	Yes	No	
Propiconazole & Tebuconazole in waters	Triazole fungicides by GCMS, (Reporting limit: 0.02-0.5ug/l)	Yes	No	No	
PRO Water (C5-C12) by GC-FID	CLS 148	No	Yes	No	
Potassium, dissolved	ICP-MS CLS129	No	Yes	No	
pH	CLS 26	No	Yes	No	
Pesticides (OCP)	GC	Yes	No	Yes	
Orthophosphate as PO4-P	Konelab CLS 35	No	Yes	No	
Nitrite as NO2	Konelab CLS 37	No	Yes	No	
Nitrate as NO3	Konelab CLS 39	No	Yes	No	
Manganese, dissolved	ICP-MS CLS129	No	Yes	No	
Magnesium, dissolved	ICP-MS CLS129	No	Yes	No	
Iron, dissolved	ICP-MS CLS 129	No	Yes	No	
Faecal Coliforms (Filtration)	Based on CLS 16	No	No	No	
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	No	Yes	No	
Copper, dissolved	ICP-MS CLS 129	No	Yes	No	
Conductivity @20C	CLS 67	No	Yes	No	
Chromium, dissolved	ICP-MS CLS 129	No	Yes	No	
Chloride	Konelab CLS 36	No	Yes	No	
Calcium, dissolved	ICP-MS CLS129	No	Yes	No	
Boron, dissolved	ICP-MS CLS129	No	Yes	No	
Benzalkonium chloride [8001-54-5]		Yes	No	No	
Arsenic, dissolved	ICP-MS CLS129	No	Yes	No	
Ammonia as N	Konelab CLS 40	No	Yes	No	
Alkalinity, total	CLS 54	No	No	No	

Laboratory Analysis, Sampling, Technical Backup, Training, Food Safety Program Auditing and Monitoring are all ISO 9001:2008 certified

Client : Supplement to Report No. : 216912

Peter Conroy PGeo., MSc, Hydrogeologist Date of Receipt : 10/01/2014

Shantraud Start Date of Analysis : 10/01/2014

Killaloe Date of Report : 06/02/2014

Sample taken by

Co. Clare Order Number :

CERTIFICATE OF ANALYSIS

Lab No	Sample Description	Test	Result	Units
493630	1053. SurfaceWater SW	pH	6.9	pH Units
	03. 10/1/14 @ 12.30pm	Conductivity @20C	254	uS/cm
		Alkalinity, total	200	mg/l CaCO3
		Total Phosphorus as P	0.87	mg/l
		Chloride	22.3	mg/l
		Nitrate as NO3	1.23	mg/l
		Nitrite as NO2	<0.017	mg/l
		Sodium, dissolved	12	mg/l
		Calcium, dissolved	72	mg/l Ca
		Faecal Coliforms (Filtration)	80	cfu/100ml
		Sulphate	3.23	mg/l
		Pesticides (OCP)	none detected	ng/l
		Orthophosphate as PO4-P	0.513	mg/l
		Ammonia as N	<0.005	mg/l
		Propiconazole & Tebuconazole in waters	<0.10	ug/l
		Iron, dissolved	1412	ug/l
		Manganese, dissolved	423	ug/l
		Copper, dissolved	12	ug/l
		Chromium, dissolved	0.9	ug/l
		Arsenic, dissolved	12	ug/l
		Magnesium, dissolved	5	mg/l
		Potassium, dissolved	17	mg/l
		Boron, dissolved	110	ug/l
		Benzalkonium chloride [8001-54-5]	<0.10	ug/l
		PRO Water (C5-C12) by GC-FID	<10	ug/l
		TOC	2.71	mg/l
		Total Coliforms (Filtration) (Environmental Waters)	1,040	cfu/100ml
		Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	712 Possible Mineral Oil*	ug/l

^{*} Note: The comment expressed here is an interpretation and is not INAB accredited

Approved by:

Rita McGrath Environmental Scientist

Rita Mc Grath

Client

Test	Specification	Subcontracted	CLS 17025 Status	Sub 1702 Status	
Total Phosphorus as P	CLS 151	No	Yes	No	
Total Coliforms (Filtration) (Environmental Waters)	CLS 16	No	No	No	
TOC	CLS 150	No	Yes	No	
Sulphate	Konelab CLS 88	No	No	No	
Sodium, dissolved	ICP-MS CLS129	No	Yes	No	
Propiconazole & Tebuconazole in waters	Triazole fungicides by GCMS, (Reporting limit: 0.02-0.5ug/l)	Yes	No	No	
PRO Water (C5-C12) by GC-FID	CLS 148	No	Yes	No	
Potassium, dissolved	ICP-MS CLS129	No	Yes	No	
рН	CLS 26	No	Yes	No	
Pesticides (OCP)	GC	Yes	No	Yes	
Orthophosphate as PO4-P	Konelab CLS 35	No	Yes	No	
Nitrite as NO2	Konelab CLS 37	No	Yes	No	
Nitrate as NO3	Konelab CLS 39	No	Yes	No	
Manganese, dissolved	ICP-MS CLS129	No	Yes	No	
Magnesium, dissolved	ICP-MS CLS129	No	Yes	No	
Iron, dissolved	ICP-MS CLS 129	No	Yes	No	
Faecal Coliforms (Filtration)	Based on CLS 16	No	No	No	
Extractable Hydrocarbons Water (C8-C40, Diesel Range and Lube Oil) by GC-FID	CLS 147	No	Yes	No	
Copper, dissolved	ICP-MS CLS 129	No	Yes	No	
Conductivity @20C	CLS 67	No	Yes	No	
Chromium, dissolved	ICP-MS CLS 129	No	Yes	No	
Chloride	Konelab CLS 36	No	Yes	No	
Calcium, dissolved	ICP-MS CLS129	No	Yes	No	
Boron, dissolved	ICP-MS CLS129	No	Yes	No	
Benzalkonium chloride [8001-54-5]		Yes	No	No	
Arsenic, total	ICP-MS CLS 129	No	Yes	No	
Arsenic, dissolved	ICP-MS CLS129	No	Yes	No	
Ammonia as N	Konelab CLS 40	No	Yes	No	
Alkalinity, total	CLS 54	No	No	No	

Laboratory Analysis, Sampling, Technical Backup, Training, Food Safety Program Auditing and Monitoring are all ISO 9001:2008 certified

Guidance to completing the PRTR workbook

AER Returns Workbook

Version 1.1.18

REFERENCE YEAR	2013
----------------	------

1. FACILITY IDENTIFICATION

Parent Company Name	Mr John English
Facility Name	Mr John English
PRTR Identification Number	P0352
Licence Number	P0352-01

Waste or IPPC Classes of Activity

No.	class_name
	The treatment or protection of wood, involving the use
	of preservatives, with a capacity exceeding 10 tonnes of
8.3	wood per day.

Address 1	Clonbrock
Address 2	Ahascragh
Address 3	Ballinasloe
Address 4	Co. Galway
	Galway
Country	Ireland
Coordinates of Location	-8.38243 53.4202
River Basin District	IEGBNISH
NACE Code	1610
Main Economic Activity	Sawmilling and planing of wood
AER Returns Contact Name	Jane English
AER Returns Contact Email Address	woodfarmfencing@gmail.com
AER Returns Contact Position	Environmental Manager
AER Returns Contact Telephone Number	090 9688755
AER Returns Contact Mobile Phone Number	090 9688755
AER Returns Contact Fax Number	090 9688448
Production Volume	300.0
Production Volume Units	Tonnes per week of fencing posts
Number of Installations	1
Number of Operating Hours in Year	2470
Number of Employees	14
User Feedback/Comments	As a result of completing the Hydrogeological
	Investigation Report in November 2013 for Technical
	Amendment A to our license, our parameters for water
	sampling have changed - please see AER 2013 for more detail
Web Address	www.woodfarmfencing.com
HOD Addition	www.woodiaiiiiiciioiiig.com

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
-----------------	---------------

50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable?	No
Have you been granted an exemption?	
If applicable which activity class applies (as per Schedule 2 of the regulations)?	
Is the reduction scheme compliance route being used ?	


4. WASTE IMPORTED/ACCEPTED ONTO SITE Guidance on waste imported/accepted onto site Do you import/accept waste onto your site for on-site treatment (either recovery or disposal activities)? No

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE

Please enter all quantities on this sheet in Tonnes

| PRTR# : P0352 | Facility Name : Mr John English | Filename : P0352_2013.xls | Return Year : 2013 |

Transfer	European		Quantity (Tonnes per Year)	Description of	Waste Treatm ent Operati	Method Used		Locatio n of Treatm	Haz Waste: Name and Licence/Permit No of Next Destination Facility Non Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste: Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)
Destination	Waste Code	Hazardous		Waste	on	M/C/E	Method Used	ent			
Within the Country	20 01 40	No	1.27	metals	R4	С	Weighed	Offsite in Ireland	Hammond Lane,WP/173/2008	.,.,Athlone,.,Ireland	
Within the Country	20 03 01	No	3.0	mixed municipal waste	D1	E	Volume Calculation	Offsite in Ireland	East Galway Waste Disposal Ltd,WCP-MO- 10-25-01	Killimor,Ballinasloe,Co Galway,0,Ireland	
To Other Countries	08 03 13	No	0.00045	waste ink other than those mentioned in 08 03 12	R4	E	Volume Calculation	Abroad	HP Planet Partners,La Poste Gonesses TIM CTCI Autorisation 0450 95919 Roissy CDG Cedex 9	Hewlett-Packard GmbH,Schickardstrass e 32,Geb. Businesspark,71034 Boblingen,Germany	
To Other Countries	03 02 04	Yes	0.44	inorganic wood preservatives	D10	С	Weighed	Abroad	Indaver Ireland ,WCP- DC-08-1121-01	4th Floor Block1 ,West Pier Busines Campus,Old Dunleary Road,Dun Laoghaire,Ireland	AVG,62.40-4 G.O. 10/70,Abfall-Verwertungs- Gesellschaft mbH,Borsigstrasse 2, Hamburg,22113,Germany

