Annual Environmental Report 2016

Agglomeration Name:	Newport
Licence Register No.	D0325-01

Contents

Section 1. Executive Summary and Introduction to the 2016 AER	2
1.1 Summary Report on 2016	3
Section 2. Monitoring Reports Summary	4
2.1 Summary report on monthly influent monitoring	4
2.2 Discharges from the agglomeration	5
2.3.1. Ambient Monitoring Summary	6
2.4 Data collection and reporting requirements under the UWWTD	6
2.5 Pollutant Release and Transfer Register (PRTR) - report for previous year	6
Section 3. Operational Reports Summary	7
3.1 Treatment Efficiency Report	7
3.2 Treatment Capacity Report	7
3.3 Extent of Agglomeration Summary Report	7
3.4 Complaints Summary	8
3.5 Reported Incidents Summary	9
3.6 Sludge / Other inputs to the WWTP	11
Section 4. Infrastructure Assessments and Programme of Improvements	12
4.1 Storm water overflow identification and inspection report	12
4.2 Report on progress made and proposals being developed to meet the improvement p	rogramme
requirements.	13
Section 5. Licence Specific Reports	15
5.1 Priority Substances Assessment	16
Section 6. Certification and Sign Off	17
Section 7. Appendices	18

Section 1. Executive Summary and Introduction to the 2016 AER

1.1 Summary Report on 2016

This Annual Environmental Report has been prepared for **D0224-01**, **Newport**, in County **Tipperary**, in accordance with the requirements of the wastewater discharge licence for the agglomeration. Specified assessments are included as an appendix to the AER as follows:

• Priority substances assessment

The agglomeration is served by a wastewater treatment plant with a Plant Capacity PE of 1900. The treatment process includes the following:-

- Preliminary Treatment (Automated Screen)
- Secondary Treatment (Conventional Activated Sludge)
- Nutrient Removal (Spent alum dosing to remove phosphorus compounds)

The final effluent from the Primary Discharge Point was non-compliant with the Emission Limit Values in 2016.

The following parameters exceeded the emission limit values in 2016:-

• Ortho P (mg/l)

1,136,660kgs total weight sludge was removed from the wastewater treatment plant in 2016 as liquid sludge. Sludge was transferred to Sludge transferred to H&L Environmental Services Ltd. Derryville, Moyne, Thurles, Co. Tipperary (1136.66 tonnes), and Nenagh WWTP D0027-01 (27 tonnes).

The following improvement works were undertaken in 2016:-Flume being constructed on plant stormwater overflow. Expected to be completed in Q1 2017.

An Annual Statement of Measures is included in Appendix 7.1

Section 2. Monitoring Reports Summary

2.1 Summary report on monthly influent monitoring

2.1.1 Monthly Influent Monitoring	BOD (mg / I)	COD (mg / I)	SS (mg / I)	TP (mg / I)	Hydraulic Loading (m3/d)	Organic Loading (PE/Day)
Number of Samples	13	13	13	4		
Annual Max.	282	644	414	9.2	2012	4,158
Annual Mean	186.58	467.49	209.64	5.41	577.20	2060.24

Table 2.1 Influent Monitoring Summary

Other inputs in the form of sludge/leachate are added to the WWTP after the influent monitoring point and are therefore not represented by influent monitoring. Other inputs, where relevant, are detailed in Section 3.6.

Significance of results

The annual mean hydraulic loading is less than the peak Treatment Plant Capacity as detailed further in Section 3.2

The annual maximum hydraulic loading is greater than the peak Treatment Plant Capacity as detailed further in Section 3.2.

The annual mean organic loading is greater than the Treatment Plant Capacity as detailed further in Section 3.2.

The annual maximum organic loading is greater than the Treatment Plant Capacity as detailed further in Section 3.2.

2.2 Discharges from the agglomeration

2.2.1 Effluent Monitoring Summary	BOD (mg/l)	COD (mg/l)	TSS (mg/l)	Ortho P (mg/l)	Ammoni a NH3 (mg/l)	рН
WWDL ELV (Schedule A) where applicable	25.00	125.00	25.00	1.50	3.00	6 to 9
ELV with Condition 2 Interpretation included	50.00	250.00	62.50	1.80	3.60	6 to 9
Number of sample results	13	13	13	13	13	13
Number of sample results above WWDL ELV	0	0	0	7	0	0
Number of sample results above ELV with Condition 2 Interpretation	0	0	0	7	0	0
Overall Compliance (Pass/Fail)	Pass	Pass	Pass	Fail	Pass	Pass

Table 2.2 - Effluent Monitoring

Significance of results

The WWTP was non-compliant with the ELV's set in the wastewater discharge licence. 7 samples were non-compliant with the ELV in relation to Ortho P (mg/l). The non-compliance is due to the WWTP not being for designed for P removal. The impact on receiving waters is assessed further in Section 2.3.

2.3.1. Ambient Monitoring Summary

Table 2.3. Ambient Monitoring Report Summary Table

Ambient Monitoring Point from	Irish Grid	EPA Feature	Bathing	Drinking	FWPM	Shellfish	Current WFD Status
WWDL (or as agreed with EPA)	Reference	Coding Tool code	Water	Water			
Upstream Monitoring Point	E171667	RS25N020290					Good
	N161622						
Downstream Monitoring Point	E170972						
	N161624	RS25N020320	No	No	No	No	Good

The results for the upstream and downstream monitoring from Tipperary County Council are included in Appendix 7.2.

Significance of results

- The WWTP was non-compliant with the ELV's set in the wastewater discharge licence as detailed in Section 2.2.
- The discharge from the wastewater treatment plant does not have an observable negative impact on the water quality.
- The discharge from the WWTP doesn't have an observable negative impact on the Water Framework Directive status.

2.4 Data collection and reporting requirements under the UWWTD

The electronic submission of data was completed on 28/02/2017

2.5 Pollutant Release and Transfer Register (PRTR) - report for previous year

A PRTR is not required as the PE is < 100000

Section 3. Operational Reports Summary

3.1 Treatment Efficiency Report

	cBOD (kg/yr)	COD (kg/yr)	SS (kg/yr)	Total P (kg/yr)
Influent mass loading (kg/year)	45,119	113,052	50,695	1,969
Effluent mass emission (kg/year)	1,539	8,653	4,605	859
% Efficiency (% reduction of	97%	92%	91%	56%
influent load)				

3.2 Treatment Capacity Report

Table 3.2 - Treatment Capacity Report Summary

Hydraulic Capacity – Design / As Constructed (dry weather flow) (m3/day)	413
Hydraulic Capacity – Design / As Constructed (peak flow) (m3/day)	1,238
Hydraulic Capacity – Current loading (m3/day)	577
Hydraulic Capacity – Remaining (m3/day)	661
Organic Capacity - Design / As Constructed (PE)	1,900
Organic Capacity - Current loading (PE)	2,060
Organic Capacity – Remaining (PE)	-160
Will the capacity be exceeded in the next three years? (Yes / No)	Yes
Is an upgrade or expansion of the WWTP proposed? (i.e. if on Minor Programme or CIP) (Yes/No)	Yes - CIP
	2017-2021

3.3 Extent of Agglomeration Summary Report

In this section Irish Water is required to report on the amount of urban waste water generated within the agglomeration. It does not include any waste water collected and created in a private system and discharged to water under a Section 4 Licence issued under the Water Pollution Acts 1977 (as amended).

Table 3.3 - Extent of Agglomeration Summary Re	% of P.E. load generated in the agglomeration	Estimated / Measured
Load generated in the agglomeration that is collected in the sewer network	100	Estimated
Load collected in the agglomerations that enters treatment plant	Unknown	Estimated
Load collected in the sewer network but discharges without treatment (includes SWO, EO, and any discharges that are not treated)	Unknown	Estimated

Table 3.3 - Extent of Agglomeration Summary Report

Load generated in the agglomeration that is collected in the sewer network is the total load generated and collected in the municipal network within the boundary of the agglomeration.

Load collected in the agglomerations that enters treatment plant is that portion of the previous figure which enters the waste water treatment plant.

Load collected but discharged without treatment is that portion of the first figure which is discharged without treatment.

3.4 Complaints Summary

A summary of complaints of an environmental nature is included below.

Table 3.4 - Complaints Summary Table

Number of Complaints	·		Number Closed
		Complaints	Complaints
1	Blocked sewer	0	1

3.5 Reported Incidents Summary

A summary of reported incidents is included below.

3.5.1 Incident Type (e.g. Non- compliance, Emission, spillage, pollution incident)	Incident Description	Cause	No. of Incidents	Recurring Incident (Yes/No)	Corrective Action	Authorities Contacted. Note 1	Reported to EPA (Yes/No)	Closed (Yes/No)
Breach of ELV	Breach of Orthophosphate ELV	WWTP not designed for P removal	1	No		None	Yes	Yes
Breach of ELV	Breach of Orthophosphate ELV	WWTP not designed for P removal	4	Yes		None	Yes	No
Breach of ELV	Breach of Orthophosphate ELV	WWTP not designed for P removal	1	No		None	Yes	Yes
Breach of ELV	Breach of Orthophosphate ELV	WWTP not designed for P removal	1	Yes		None	Yes	Yes
Uncontrolle d Release	Uncontrolled Release	Plant or equipment breakdown at WWTP	1	No		None	Yes	Yes

Note 1: For shellfish waters notify the Marine Institute (MI) Sea Fisheries Protection Authority (SFPA) Food Safety Authority (FSAI) and An Bord Iascaigh Mhara (BIM). This should also include any other authorities that should be contacted arising from the findings of any Licence Specific Reports also e.g. Drinking Water Abstraction Impact Risk Assessment, Fresh Water Pearl Mussel Impact Assessments etc.

Table 3.5.2 - Summary of Overall Incidents

Number of Incidents in 2016	8
Number of Incidents reported to the EPA via EDEN in 2016	8
Explanation of any discrepancies between the two numbers above	N/A

3.6 Sludge / Other inputs to the WWTP

Other inputs to the waste water treatment plant are summarised in Table 3.6 below.

Table 3.6 - Other Inputs

Input Type	m3/year	P.E.	% of load to WWTP	Included in Influent Monitoring? (Y/N)	Is there a leachate/sludge acceptance procedure for the WWTP? (Y/N)	Is there a dedicated leachate/sludge acceptance facility for the WWTP? (Y/N)
Domestic /Septic	0	0	0.00%	No	No	No
Tank Sludge						
Industrial /	0	0	0.00%	No	No	No
Commercial Sludge						
Landfill Leachate	0	0	0.00%	No	No	No
(delivered by tanker)						
Landfill Leachate	0	0	0.00%	No	No	No
(delivered by sewer						
network)						
Other (Alum Sludge)	750	<100	<1	No	Yes	No

Section 4. Infrastructure Assessments and Programme of Improvements

4.1 Storm water overflow identification and inspection report

The Storm Water Overflow Identification & Inspection report is not included in this AER. This report will be in the 2017 AER Report. A summary of the significance and operation is included below.

WWDL Name / Code for Storm Water Overflow	Irish Grid Ref.	Included in Schedule A4 of the WWDL	Significance of the overflow (High/Med/ Low)	Compliance with DoEHLG criteria	No. of times activated in 2016 (No. of events)	Total volume discharged in 2016 (m3)	Total volume discharged in 2016 (P.E.)	Estimated / Measured data
TPEFF2800D 0325SW003	E172343 N161983	Yes	Not yet assessed	Not yet assessed	Unknown	Unknown	Unknown	N/A
tPEFF2800D 0325SW004	E171300 N161557	Yes	Not yet assessed	Not yet assessed	Unknown	Unknown	Unknown	N/A

Table 4.1.1 - SWO Identification and Inspection Summary Report

Table 4.1.2 - SWO Identification and Inspection Summary Report

How much sewage was discharged via SWOs in the agglomeration in the year (m3/yr)?	Unknown
How much sewage was discharged via SWOs in the agglomeration in the year (p.e.)?	Unknown
What % of the total volume of sewage generated in the agglomeration was discharged via SWOs in the agglomeration in 2016?	Unknown
Is each SWO identified as non-compliant with DoEHLG Guidance included in the Programme of Improvements?	Not yet assessed
The SWO assessment includes the requirements of relevant WWDL Schedules (Yes/No)	Not yet assessed
Have the EPA been advised of any additional SWOs / changes to Schedules A/C under Condition 1 ?	No

4.2 Report on progress made and proposals being developed to meet the improvement programme requirements.

The Improvement Programme report addresses the **Specified Improvement Programmes** as detailed in Schedules A3 and C of the WWDL. It should detail other improvements identified through assessments required under the licence.

Specified Improvement Programmes	Licence Schedule	Licence Completion Date	Date Expired	Status of Works	% Construction Work Completed	Licensee Timeframe for Completing the Work	Comments
Improvements to meet ELVs as specified in Schedule A.	C	31/12/2015	Yes	At planning stage	0%		
Improvements works may be required to increase the organic and hydraulic treatment capacity of the plant to ensure compliance with Condition 1.7.	C	31/12/2015	Yes	At planning stage	0%		

Table 4.2.1 - Specified Improvement Programme Summary

A summary of the status of any improvements identified by under Condition 5.2 is included below.

Table 4.2.2 - Improvement Programme Summary

Identifier /	Description	Source	(%	Completion	
Name			complete)	Date	
N/A	N/A	N/A	N/A	N/A	N/A

Table 4.2.3 - Sewer Integrity Risk Assessment Tool Summary

The Improvement Programme	Risk Assessment	Risk Assessment	Reference to	Specified	Comment
should include an assessment of the	Rating (High,	Score	relevant section of	improvements	
integrity of the existing wastewater	Medium, Low)		AER (e.g. Appendix		
works for the following:			2 Section 4.		
Hydraulic Risk Assessment Score	Medium	100	2015 AER	n/a	
Environmental Risk Assessment	Low	240	2015 AER	n/a	
Score					
Structural Risk Assessment Score	High	140	2015 AER	n/a	
Operation & Maintenance Risk	Low	20	2015 AER	n/a	
Assessment Score					
Overall Risk Score for the	Low	500	2015 AER	n/a	The overall
agglomeration					assessment is
					probably medium risk

Section 5. Licence Specific Reports

Licence Specific Report	Never required by condition 5 in Licence	Required in this AER or outstanding from previous AER	Included in this AER / Remains outstanding	Reference to previous AER containing report or relevant section of this AER
Priority Substances Assessment	Required	Yes	Yes	Appendix 7.3
Drinking Water Abstraction	Not Required	No	No	N/A
Point Risk Assessment				
Shellfish Impact Assessment	Not Required	No	No	N/A
Pearl Mussel Report	Not Required	No	No	N/A
Toxicity/Leachate Management	Not Required	No	No	N/A
Toxicity of Final Effluent Report	Not Required	No	No	N/A
Small Stream Risk Score Assessment	Not Required	No	No	N/A
Habitats Impact Assessment	Not Required	No	No	N/A

Licence Specific Reports Summary Table

Licence Specific Reports Summary of Findings

Licence Specific Report	Recommendations in Report	Summary of Recommendations in Report
Priority Substances Assessment	Yes	No impact on the receiving waters is anticipated.
Drinking Water Abstraction Point	No	n/a
Risk Assessment		
Shellfish Impact Assessment	No	n/a
Pearl Mussel Report	No	n/a
Toxicity/Leachate Management	No	n/a
Toxicity of Final Effluent Report	No	n/a
Small Stream Risk Score Assessment	No	n/a
Habitats Impact Assessment	No	n/a

5.1 Priority Substances Assessment

The Priority Substances Assessment Report is included in Appendix 7.2. A summary of the significance and operation is included below.

Table 5.1 - Filolity Substance Assessment Summary	
	Licensee self-assessment
	checks to determine whether
	all relevant information is
	included in the Assessment.
Does the assessment use the Desk Top Study Method or Screening	Desk Top Study and Screening
Analysis to determine if the discharge contains the parameters in	Analysis.
Appendix 1 of the EPA guidance	
Does the assessment include a review of Trade inputs to the works?	Yes
Does the assessment include a review of other inputs to the works?	Yes
Does the report include an assessment of the significance of the results	Yes
where a listed material is present in the discharge? (e.g. impact on the	
relevant EQS standard for the receiving water)	
Does the assessment identify that priority substances may be impacting	No.
the receiving water?	
Does the Improvement Programme for the agglomeration include the	N/A
elimination / reduction of all priority substances identified as having an	
impact on receiving water quality?	
Recommendations	No impact on the receiving
	waters is anticipated.
Status of any improvement measures required	N/A

Table 5.1 - Priority Substance Assessment Summary

Section 6. Certification and Sign Off

Tuble 0.1 Summary of ALK contents	
Does the AER include an executive summary?	Yes
Does the AER include an assessment of the performance of the Waste Water Works	Yes
(i.e. have the results of assessments been interpreted against WWDL requirements	
and or Environmental Quality Standards)?	
Is there a need to advise the EPA for consideration of a technical amendment /	No
review of the licence?	
List reason e.g. additional SWO identified	N/A
Is there a need to request/advise the EPA of any modifications to the existing	No
WWDL? Refer to Condition 1.7 (changes to works/discharges) & Condition 4	
(changes to monitoring location, frequency etc.)	
List reason e.g. failure to complete specified works within dates specified in the	N/A
licence, changes to monitoring requirements	
Have these processes commenced? (i.e. Request for Technical Amendment / Licence	N/A
Review / Change Request)	
Are all outstanding reports and assessments from previous AERs included as an	Yes
appendix to this AER?	
Ensure the following reports are included	Priority substances assessment

Table 6.1 - Summary of AER Contents

Declaration by Irish Water

The AER contains the following:

- Introduction and background to 2016 AER.
- Monitoring Reports Summary.
- Operational Reports Summary.
- Infrastructural Assessment and Programme of Improvements.
- Licence specific reports
- Certification and Sign Off
- Appendices

I certify that the information given in this Annual Environmental Report is truthful, accurate and complete:

Signed: Elizabet Marte Date: 03/03/2017.....

Elizabeth Arnett Head of Corporate Affairs and Environmental Regulation

Section 7. Appendices

Appendix 7.1 Statement of Measures / Improvement Programme

No additional measures have been taken in 2016 in relation to prevention of environmental damage. The need for measures to prevent environmental damage will be reviewed on an annual basis.

Appendix 7.2 Ambient Monitoring Summary

	Sample Date	25-May-2016	21-June-2016	7-July-2016	28-July-2016
Parameter		-	-	-	-
Biological Oxygen Demand	mg/l	1.9	1.8	1.3	2.32
Ammonia N	mg/l	< 0.01	< 0.01	< 0.01	0.016
Dissolved Oxygen % Saturation	% 02				99
Dissolved Oxygen	mg/l				9.62
Ortho-Phosphate P	mg/l	< 0.01	0.033	0.014	0.023
рН	pH units	7.98	7.83	8.11	8.11
Suspended Solids	mg/l	< 0.4	< 0.4	< 0.4	2
COD Chemical Oxygen Demand	mg/l				44
Temperature	Degrees C	11.8	13.3	14.5	15.5

Table 2.3.1. Newport Ambient Upstream Monitoring Results for 2016

Table 2.3.2. Newport Ambient Downstream Monitoring Results for 2016

	Sample Date	25-May-2016	21-June-2016	7-July-2016	28-July-2016
Parameter		-	-	-	-
Biological Oxygen Demand	mg/l	1.9	1.6	1.3	2.26
Ammonia N	mg/l	< 0.01	< 0.01	< 0.01	0.016
Dissolved Oxygen % Saturation	% O2				96.3
Dissolved Oxygen	mg/l				9.65
Ortho-Phosphate P	mg/l	< 0.01	0.01	0.025	0.026
рН	pH units	7.99	7.55	7.91	7.7
Suspended Solids	mg/l	< 0.4	< 0.4	< 0.4	0
COD Chemical Oxygen Demand	mg/l				39
Temperature	Degrees C	11.5	13.2	14.3	15.2

Table 2.3.2. Ecological Status of Newport River (upstream and downstream of Newport WWTP)

Parameter	Upstream	Status	Overall Status for Upstream	Downstream	Status	Overall Status for Downstream
BOD	1.83(mean)	Less than Good	Less than Good	1.77 (mean)	High	Less than Good
Total Ammonia (as N)	0.012(mean)	High		0.012(mean)	High	
Orthophosphate (as P)	0.02(mean)	High		0.018(mean)	High	

Table 2.3.3. Schedule 5 of the European Communities Environmental Objectives (Surface Waters) Regulations 2009

Parameter	Value	Status
BOD	<1.3 (mean) or <2.2 (95%ile)	High
BOD	<1.5(mean) 0r <2.6(95%ile)	Good
Total Ammonia	<0.040 (mean) or <0.090	
as N	(95%ile)	High
Total Ammonia	<0.065 (mean) or <0.140	
as N	(95%ile)	Good
MRP as P	<0.025(mean) or <0.045 (95%ile)	High
	<0.035 (mean) or <0.075	
MRP as P	(95%ile)	Good

Appendix 7.3 Priority Substances Assessment

Priority Substances Assessment

Agglomeration Name:	Newport
Licence Register No.	D0325-01

Table of Contents

1	Introduction	1
2	Desktop Study	1
2.1	Assessment of Analysis Required	1
2.2	Review outcome of Desktop study	2
3	Assessment of Significance and Recommendations	2

Appendix 1 – Screening of Parameters for Priority Substances

- Appendix 2 Priority Substance Screening Flowchart
- Appendix 3 Receiving Waters Priority Substance Data

1 Introduction

This report has been prepared for D0325-01, Newport, in County Tipperary in accordance with the requirements of Condition 4.11 of the wastewater discharge licence for the agglomeration.

This desk top study has been undertaken to determine the necessity, if any, for analysis of the discharge to comply with the condition in the wastewater discharge licence based on the *Guidance* on the Screening for Priority Substances for Waste Water Discharge Licences, issued by the EPA. Relevant inputs to the waste water works and estimates of emissions from the discharge point have been taken into account in the preparation of this report. Relevant inputs to the waste water works, any relevant measurements / calculations / estimates of emissions from the discharge point and any relevant measurements undertaken at representative downstream monitoring locations have been taken into account in the preparation of this report.

Details of the emissions concentration for the primary discharge and impact on the receiving water are included in Appendix 1.

2 Desktop Study

2.1 Assessment of Analysis Required

A. Review of all industrial inputs into WWTP

A review of all inputs into the wastewater treatment plant (WWTP) has indicated that there are no authorised industrial type discharges, unauthorised discharges with a likelihood of priority substances, leachate discharges or other imports. The wastewater influent to the WWTP is domestic in nature.

B. Discharge monitoring

The primary discharge has been analysed for priority substances.

Analysis data is included in Appendix 1 with details of the sample data and source of the data. Analysis data does not include the full list of priority substances listed in the EPA's *Guidance on the Screening for Priority Substances for Waste Water Discharge Licences* and is therefore substituted with data from the EPA PRTR Toolkit.

C. Downstream monitoring location's participation in relevant monitoring programme

Analysis data for the relevant parameters from upstream and downstream ambient monitoring undertaken by Tipperary County Council is included in Appendix 3. No parameters have been identified as potentially being higher than the required EQS either upstream or downstream of the WWTP, however a number of parameters showed an increase in the downstream concentration (see table below). These increases in concentration did not coincide with parameters identified in the primary discharge as potentially being higher than the required EQS following dilution and are therefore unlikely to be caused by the WWTP discharge.

	PCBs	Zinc	Barium	Boron	Nickel	Chloride	тос	Hardness	рΗ
	μ g/l	mg/l							
EQS	-	1003	-	-	4	-	-	-	-
Upstream	0.0005	3.4	201	0.25	0.75	8600	2440	108.1	8.08
Downstream	0.0011	3.6	205.4	0.5	1.6	8900	2690	112.5	8.27
Difference	0.0006	0.2	4.4	0.25	0.85	300	250		

A number of parameters in the final effluent were identified as potentially being higher than the required EQS following dilution. However, there was no recorded correlating increase in the ambient water quality downstream of the WWTP.

D. Participation in PRTR reporting

Where priority substances data for the effluent was not available, the emission concentrations of priority substances has been estimated using the EPA's urban WWTP calculation tool for PRTR reporting. PRTR Tool data has been included in the table in Appendix 1 where analysis data of the primary discharge is not available.

It is noted from the EPA's report, *An Inventory of Emissions to Waters in Ireland*, that extensive assessment of emission factors was undertaken during 2011 / 2012 that focussed on the evaluation of inputs / output concentrations and removal efficiency using a variety of different sized plants and wastewater treatment options. This has led to the significant refinement of the electronic templates toolkit used for WWTP assessment using the PRTR tool. The estimated emission data relevant to the Newport agglomeration pertains to a WWTP < 10,000 p.e., with no saline intrusion, with secondary treatment, and with no nutrient removal.

2.2 Review outcome of Desktop study

Full characterisation of the primary discharge has been achieved for all priority substances included in Appendix 1. Priority substance concentrations were available for all parameters based on either analysis or the EPA PRTR toolkit.

A review of the national monitoring programme for priority substances in wastewater is proposed to be undertaken by Irish Water in 2016 in consultation with the EPA. It is proposed that this review, in consultation with the EPA, will determine the scope of future Priority Substances monitoring at Irish Water WWTP's.

3 Assessment of Significance and Recommendations

An assessment of the potential for impacts on receiving waters from priority substances in the primary discharge has been carried out. The assessment considers the primary discharge relevant to Environmental Quality Standards (EQS) for priority substances in surface waters, as set out in the European Communities Environmental Objectives (Surface Waters) Regulations 2009, as amended.

A number of parameters have been identified as potentially being higher than the required EQS, following dilution, as follows:-

- Flouranthene
- Benzo[k]fluoranthene

- Benzo[ghi]perylene
- Benzo[b]fluoranthene
- Benzo[a]pyrene
- Dieldrin

However, the Limit of Detection (LOD) for the above measured parameters was greater than the EQS value prescribed in the Regulations i.e. the LODs were not sufficiently low and the values generated are not appropriate for use (e.g. the LOD was <1 whereas the EQS was <0.002, 50% of the LOD was used as the "measured value" in the calculation).

When the values generated by the EPA's urban WWTP calculation tool for PRTR reporting are substituted for the above parameters (noting that the LODs applied in the generation of the PRTR Tool were much lower than that of the 2016 effluent monitoring), the assessment shows no parameters as potentially being higher than the required EQS following dilution (with the exception of Benzo[a]pyrene, which again is due to the Limit of Detection (LOD) was greater than the EQS value in the development of the PRTR estimation tool. It is possible therefore that the Benzo[a]pyrene result is not a true reflection of reality. <u>On this basis no impact on the receiving waters is anticipated.</u>

The EPA have prepared a report on priority substances, *An Inventory of Emissions to Waters in Ireland*. This document states that Ireland appears to have relatively few problems associated with the presence of Priority / Priority Hazardous substances in its surface waters. It identifies that wastewater discharges are a potential source of metals in receiving waters with lead being the main metal identified as associated with wastewater discharges. However, metals exceedences, in particular those for cadmium, lead, and nickel are primarily associated with areas of historic mining activity. Similarly PAH's have been identified in stormwater overflows but the most significant source is considered to be rainfall.

A consultation process with the EPA is being undertaken by Irish Water to establish appropriate levels of monitoring for priority and dangerous substances nationally, taking into account the particular requirements of the Water Framework Directive. This will allow a targeted monitoring programme to be undertaken in areas where priority substances have been identified or industrial discharges or imports provide a potential source, and where there is a shortfall of existing monitoring data.

Does the assessment use the Desk Top Study Method or Screening Analysis to determine if the discharge contains the parameters in Appendix 1 of the EPA guidance	Desk Top Study and Screening Analysis
Does the assessment include a review of licensed / authorised inputs to the works?	Yes
Does the assessment include a review of other (unauthorised) inputs to the works?	Yes
Does the report include an assessment of the significance of the results where a listed material is present in the discharge? (e.g. impact on the relevant EQS standard for the receiving water)	Yes

Does the assessment identify that priority substances may be impacting the receiving water?	No
Does the Improvement Programme for the agglomeration include the elimination / reduction of all priority substances identified as having an impact on receiving water quality?	n/a

Appendix 1 – Screening of Parameters for Priority Substances

AA: Annual Average

MAC: Maximum Allowable Concentration

EQS: Environmental Quality Standards

Dilution factor in receiving water¹: 19.7 (based on 95% ile river flow of 0.11m³/s from Hydrometric Station 25054, and a normal flow of 508.2m³/day from WWTP as noted in the Inspectors Report)

No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (µg/I)	Measured /Estimated Conc. (µg/l) ¹	Data Source [Sample / PRTR / Other (state)]	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
1	Benzene	VOCs	10	8	<0.1	Sample	13/10/2016	No	No
2	Carbon tetrachloride	VOCs	12	12	<0.5	Sample	13/10/2016	No	No
3	1,2-Dichloroethane	VOCs	10	10	<0.1	Sample	13/10/2016	No	No
4	Dichloromethane	VOCs	20	20	<5.0	Sample	13/10/2016	No	No
5	Tetrachloroethylene	VOCs	10	10	0.06	PRTR	N/A	No	No
6	Trichloroethylene	VOCs	10	10	0.00	PRTR	N/A	No	No
7	Trichlorobenzenes	VOCs	0.4	0.4	<0.5	Sample	13/10/2016	No	No
8	Trichloromethane	VOCs	2.5	2.5	2.39	PRTR	N/A	No	No
9	Xylenes (all isomers)	VOCs	10	10	<0.5	Sample	13/10/2016	No	No
10	Ethyl Benzene	VOCs	n/a	n/a	<0.5	Sample	13/10/2016	No	No
11	Toluene	VOCs	10	10	<0.5	Sample	13/10/2016	No	No
12	Naphthlene ²	PAHs	2	2	<1.0	Sample	13/10/2016	No	No
13	Fluoranthene ¹	PAHs	0.0063	0.0063	0.05	PRTR	N/A	No	No

² The EQS for these substances shall take effect from 22 December 2015

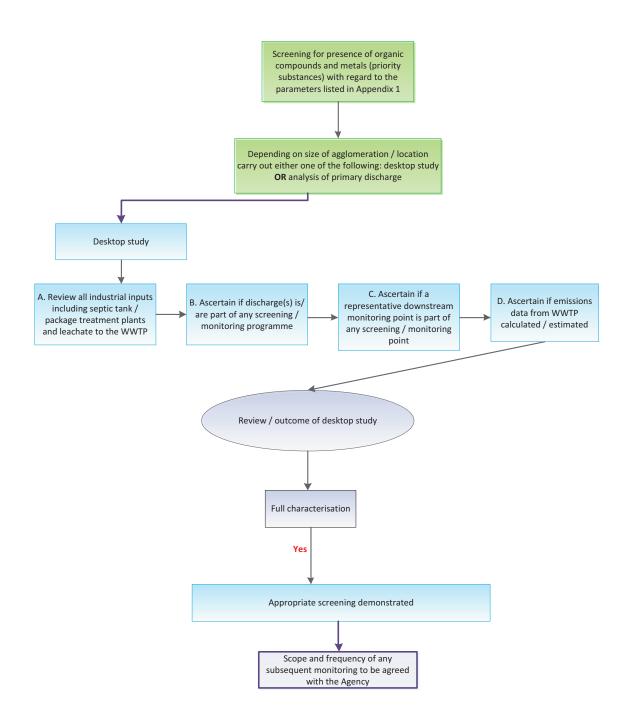
No.	Compound	Group of compounds	AA-EQS Inland SW (µg/I)	AA-EQS Other SW (µg/I)	Measured /Estimated Conc. (µg/l) ¹	Data Source [Sample / PRTR / Other (state)]	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
14	Benzo[k]fluoranthene ³	PAHs	MAC of 0.017	MAC of 0.017	0.05	PRTR	N/A	Yes	No
15	Benzo[ghi]perylene ²	PAHs	MAC of 8.2 x 10 ⁻³	MAC of 8.2 x 10 ⁻⁴	0.05	PRTR	N/A	Yes	No
16	Indeno[1,2,3- c,d]pyrene ²	PAHs	N/A	N/A	0.05	PRTR	N/A	No	No
17	Benzo[b]fluoranthene ²	PAHs	MAC of 0.017	MAC of 0.017	0.05	PRTR	N/A	Yes	No
18	Benzo[a]pyrene	PAHs	1.7 x 10 ⁻⁴	1.7 x 10 ⁻⁴	0.05	PRTR	N/A	Yes	Yes
19	Di(2-ethylhexyl)phthalate (DEHP)	Plasticiser	1.3	1.3	0.92	PRTR	N/A	No	No
20	Isodrin ⁴	Pesticides			0.00	PRTR	N/A	No	No
21	Dieldrin ³	Pesticides	∑=0.01	∑=0.005	<1.0	Sample	13/10/2016	Yes	No
22	Diuron	Pesticides	0.2	0.2	0.03	PRTR	N/A	No	No
23	Isoproturon	Pesticides	0.3	0.3	0.01	PRTR	N/A	No	No
24	Atrazine	Pesticides	0.6	0.6	0.01	PRTR	N/A	No	No
25	Simazine	Pesticides	1	1	0.01	PRTR	N/A	No	No
26	Glyphosate	Pesticides	60	-	1.53	PRTR	N/A	No	No
27	Mecoprop	Pesticides	N/A	N/A	0.11	PRTR	N/A	N/A	N/A
28	2,4-D	Pesticides	N/A	N/A	0.05	PRTR	N/A	N/A	N/A
29	MCPA	Pesticides	N/A	N/A	0.09	PRTR	N/A	N/A	N/A
30	Linuron	Pesticides	0.7	0.7	0.00	PRTR	N/A	No	No

³ No indicative parameter is provided for this group of substances

 $^{4}\Sigma$ of Aldrin, Dieldrin, Endrin and Isodrin.

No.	Compound	Group of compounds	AA-EQS Inland SW (µg/l)	AA-EQS Other SW (µg/l)	Measured /Estimated Conc. (μg/l) ¹	Data Source [Sample / PRTR / Other (state)]	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
31	Dichlobenil	Pesticides	N/A	N/A	<1.0	Sample	13/10/2016	N/A	N/A
32	2,6-Dichlorobenzamide	Pesticides	N/A	N/A	0.08	PRTR	N/A	N/A	N/A
33	PCBs	PCBs	N/A	N/A	<0.04	Sample	13/10/2016	N/A	N/A
34	Phenols (as Total C)	Phenols	8	8	<1.0	Sample	13/10/2016	No	No
35	Lead	Metals	1.2	1.3	<0.9	Sample	13/10/2016	No	No
36	Arsenic	Metals	25	20	<1.0	Sample	13/10/2016	No	No
37	Copper	Metals	30 ²	5	0.011	Sample	13/10/2016	No	No
38	Zinc	Metals	100 ³	40	32	Sample	13/10/2016	No	No
39	Cadmium	Metals	0.15 ⁴	0.2	<0.3	Sample	13/10/2016	No	No
40	Mercury	Metals	MAC of 0.07	MAC of 0.07	<0.06	Sample	13/10/2016	No	No
41	Chromium VI	Metals	3.4	0.6	<3.0	Sample	13/10/2016	No	No
42	Selenium	Metals	n/a	n/a	<3.0	Sample	13/10/2016	No	No
43	Antimony	Metals	N/A	N/A	0.5	Sample	13/10/2016	N/A	N/A
44	Molybdenum	Metals	N/A	N/A	<3.0	Sample	13/10/2016	N/A	N/A
45	Tin	Metals	N/A	N/A	<3.0	Sample	13/10/2016	N/A	N/A
46	Barium	Metals	N/A	N/A	122.5	Sample	13/10/2016	N/A	N/A
47	Boron	Metals	N/A	N/A	<5.0	Sample	13/10/2016	N/A	N/A
48	Cobalt	Metals	N/A	N/A	<3000	Sample	13/10/2016	N/A	N/A
49	Vanadium	Metals	N/A	N/A	<3.0	Sample	13/10/2016	N/A	N/A
50	Nickel	Metals	4	8.6	<1.5	Sample	13/10/2016	No	No
51	Fluoride	General	500	1,500	0.16	Sample	13/10/2016	No	No
52	Chloride	General	N/A	N/A	58,000	Sample	13/10/2016	N/A	N/A
53	ТОС	General	N/A	N/A	6720	Sample	13/10/2016	N/A	N/A
54	Cyanide	General	10	10	2.93	PRTR	N/A	No	No
	Conductivity	General	N/A	N/A	N/A	PRTR	N/A	N/A	N/A

No.	Compound	Group of	AA-EQS	AA-EQS	Measured	Data Source	Sample Date	Effluent	Effluent
		compounds	Inland SW (µg/l)	Other SW (µg/l)	/Estimated Conc. (µg/l) ¹	[Sample / PRTR / Other (state)]	(if applicable)	Concentration above AA concentration (Yes/No)	Concentration above AA concentration after dilution (Yes/No)
	Hardness (mg/l CaCO₃)	General	N/A	N/A	164.2	Sample	13/10/2016	N/A	N/A
	рН	General	N/A	N/A	7.18	Sample	13/10/2016	N/A	N/A


Notes:

- 1. Where measured values are available these should be used instead of estimated values from PRTR tool.
- 2. In the case of Copper the value 5 applies where the water hardness measured in mg/l CaCO₃ is less than or equal to 100; the value 30 applies where the water hardness exceeds 100 mg/l CaCO₃. Estimated CaCO₃ value > 100 where no sampling data available (based on PRTR tool)
- 3. In the case of Zinc, the standard shall be 8 μg/l for water hardness with annual average values less than or equal to 10 mg/l CaCO3, 50 μg/l for water hardness greater than 10 mg/l CaCO₃ and less than or equal to 100 mg/l CaCO3 and 100 μg/l elsewhere. Estimated CaCO₃ value > 100 where no sampling data available
- 4. For Cadmium and its compounds the EQS values vary dependent upon the hardness of the water as specified in five class categories (Class 1: <40 mg CaCO3/I, Class 2: 40 to <50 mg CaCO3/I, Class 3: 50 to <100 mg CaCO3/I, Class 4: 100 to <200 mg CaCO3/I and Class 5: _200 mg CaCO3/I)

Appendix 2 – Priority Substance Screening Flowchart

A flow chart for the screening of the presence of organic compounds and metals (Priority Substances) from WWTP is included below. This flowchart shows that appropriate screening has been demonstrated in line with the assessment undertaken in this report.

Full Characterisation

Appendix 3 – Receiving Waters Priority Substance Data

A	Archived	Category	Entity	Entity Reference	Station		Station Easting	Station Northing		River Basin District	Water Management Unit		Sample Reference	Sample Date	Sample Time	Sample Method	Sampled By	Reason
												SH_Mulkear_						
Ņ	/es	River Quality	Newport (Tipperary)	25N02	Upstream Newport Stp	RS25N020290	171667	161622	Tipperary Co Co	Shannon RBD		NewportMAIN _1Lower	1655WW0648	13-Oct-2016	09:55	Grab	Donal Mackey	Compliance

Parameter	Biological Oxy	Ammonia N	Dissolved Oxy	Dissolved Oxy	Ortho-Phospha	pН	Suspended So	1,2-Dichloroeth	2,4-D Acid Her	2,6-Dichlorobe	Antimony	Arsenic	Atrazine	Barium	Benzene	Benzo(b)fluora	Benzo(ghi)pery	Benzo(k)fluorar
Max.																		
Min.																		
Test Method																		
Analyst Conclu	mg/l	mg/l	% O2	mg/l	mg/l	pH units	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
-	1.9	< 0.01	98.7	11.02	0.014	8.08	< 0.4	< 0.1	< 0.005	< 0.02	< 0.3	< 1	< 0.005	201	< 0.1	< 0.01	< 0.01	< 0.01
Parameter	Benzo(a)pyren	Boron	Cadmium	Calcium	Carbon Tetrach	Chloride	Chloroform	Chromium	Cobalt	Copper	Cyanide	Dichlobenil	Dichlorometha	Dieldrin	Diuron	Ethylbenzene	Fluoranthene	Fluoride
Max.																		
Min.																		
Test Method																		
Analyst Conclu	μg/l	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
-	< 0.003	< 0.5	< 0.3	34.7	< 0.5	8.6	< 0.5	< 3	< 3	< 0.003	< 1.2	< 0.003	< 5	< 0.005	< 0.005	< 0.5	< 0.01	< 0.1
Parameter	Glyphosate	Hardness CaC	Indeno(1,2,3-c	, Isoproturon	Lead	Linuron	Magnesium	MCPA	Mecoprop Tota	Mercury	Molybdenum	Naphthalene	Nickel	PCB	Phenols	Selenium	Simazine	Temperature
Max.																		
Min.																		
Test Method																		
Analyst Conclu	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	Degrees C
-	< 0.005	108.1	< 0.005	< 0.005	< 0.9	< 0.005	5.2	< 0.005	< 0.005	0.07	< 3	0.019	< 1.5	< 0.001	< 1	< 3	< 0.005	9.9

Parameter	Tetrachloroetha	Tin	Toluene	Total Organic C	Trichlorobenze	Vanadium	Xylene Total	Zinc
Max.								
Min.								
Test Method								
Analyst Conclu	μg/l	μg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l
-	< 0.1	< 3	< 0.5	2.44	< 0.5	< 3	< 0.5	3.4

Archived	Category	Entity	Entity Reference	Station	Station Referer	Station Easting	Station Northin	Laboratory	River Basin Dis	Water Manage	Water Body	Sample Templa	Sample Refere	Sample Date	Sample Time	Sample Metho	Sampled By	Reason
												Licence						
											SH_Mulkear_	Downstream						
		Newport		Downstream				Tipperary Co			NewportMAIN	(Ntipp) Priority						
Yes	River Quality	(Tipperary)	25N02	Newport Stp	RS25N020320	170972	161624	Co	Shannon RBD	Mulkear	_1Lower	Substances	1655WW0649	13-Oct-2016	10:10	Grab	Donal Mackey	Compliance

Parameter	Biological Oxy	Ammonia N	Dissolved Oxyg	Dissolved Oxy	Ortho-Phospha	арН	Suspended So	1,2-Dichloroeth	h2,4-D Acid Her	2,6-Dichlorobe	r Antimony	Arsenic	Atrazine	Barium	Benzene	Benzo(b)fluora	a Benzo(ghi)pery	Benzo(k)fluora
Max.																		
Min.																		
Test Method																		
Analyst Concl		mg/l	% 02	mg/l	mg/l	pH units	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
-	1.8	0.011	102.9	11.69	0.02	8.27	< 0.4	< 0.1	< 0.005	< 0.02	< 0.3	< 1	< 0.005	205.4	< 0.1	< 0.01	< 0.01	< 0.01
Parameter		Deren	Cadmium	Calcium	Carbon Tetrac	Chlorido	Chloroform	Chromium	Cobalt	Cannar	Cyanide	Dichlobenil	Dichlorometha	Dialdrin	Diuron	Ethydhenzone	Fluoranthene	Elugrida
Max.	Benzo(a)pyren	501011 	Gadmum	Galcium	Carbon Tetraci	Gnionde	Chiorolom	Ghroinium	Coball	Copper	Cyanide	Dichioberiii	Dichlorometha		Diuron	Ethylbenzene	Fluoranthene	Fluonde
Min.																		
Test Method																		
Analyst Concl	u μg/l	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
-	< 0.003	0.5	< 0.3	36.5	< 0.5	8.9	< 0.5	< 3	< 3	< 0.003	< 1.2	< 0.003	< 5	< 0.005	< 0.005	< 0.5	< 0.01	< 0.1
Parameter	Glyphosate	Hardness CaC	Indeno(1,2,3-c,	, Isoproturon	Lead	Linuron	Magnesium	MCPA	Mecoprop Tota	Mercury	Molybdenum	Naphthalene	Nickel	PCB	Phenols	Selenium	Simazine	Temperature
N 4																		
Max.																		
Min.					-													
Min. Test Method																		
Min.	 u µg/l	 mg/l	 µg/l	 μg/l	 μg/l	 µg/l	 mg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method																		
Min. Test Method Analyst Concl	 υ μg/l < 0.005	 mg/l 112.5	 μg/l < 0.005	 μg/l < 0.005	 μg/l < 0.9	 μg/l < 0.005	 mg/l 5.2	 μg/l < 0.005	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method Analyst Concl - Parameter	 u µg/l	 mg/l 112.5 Tin	 μg/l < 0.005 Toluene	 μg/l < 0.005	 μg/l < 0.9	 μg/l < 0.005	 mg/l 5.2	 μg/l < 0.005 Zinc	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method Analyst Concl Parameter Max.	 u μg/l < 0.005	 mg/l 112.5	 μg/l < 0.005	 μg/l < 0.005	 μg/l < 0.9	 μg/l < 0.005	 mg/l 5.2 Xylene Total	 μg/l < 0.005	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method Analyst Concl Parameter Max. Min.	 μ μg/l < 0.005	 mg/l 112.5 Tin 	 μg/l < 0.005 Toluene 	 μg/l < 0.005 Total Organic (μg/l < 0.9	 μg/l < 0.005	 mg/l 5.2 Xylene Total	 μg/l < 0.005 Zinc 	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method Analyst Concl Parameter Max. Min. Test Method	 u µg/l < 0.005	 mg/l 112.5 Tin 	 µg/l < 0.005 Toluene 	 µg/l < 0.005	 µg/l < 0.9 (Trichlorobenze 	 µg/l < 0.005 Vanadium 	 mg/l 5.2 Xylene Total 	 µg/l < 0.005 Zinc 	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degrees C
Min. Test Method Analyst Concl Parameter Max. Min.	 u µg/l < 0.005	 mg/l 112.5 Tin 	 µg/l < 0.005 Toluene 	 µg/l < 0.005 Total Organic (µg/l < 0.9 Trichlorobenze	 μg/l < 0.005	 mg/l 5.2 Xylene Total	 μg/l < 0.005 Zinc 	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 μg/l	 µg/l	 μg/l	 μg/l	 Degree