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ENVIRONMENTAL PROTECTION AGENCY
The Environmental Protection Agency (EPA) is responsible for 
protecting and improving the environment as a valuable asset 
for the people of Ireland. We are committed to protecting people 
and the environment from the harmful effects of radiation and 
pollution.

The work of the EPA can be 
divided into three main areas:

Regulation: We implement effective regulation and environmental 
compliance systems to deliver good environmental outcomes and 
target those who don’t comply.

Knowledge: We provide high quality, targeted and timely 
environmental data, information and assessment to inform 
decision making at all levels.

Advocacy: We work with others to advocate for a clean, 
productive and well protected environment and for sustainable 
environmental behaviour.

Our Responsibilities

Licensing
We regulate the following activities so that they do not endanger 
human health or harm the environment:
•  waste facilities (e.g. landfills, incinerators, waste transfer 

stations);
•  large scale industrial activities (e.g. pharmaceutical, cement 

manufacturing, power plants);
•  intensive agriculture (e.g. pigs, poultry);
•  the contained use and controlled release of Genetically 

Modified Organisms (GMOs);
•  sources of ionising radiation (e.g. x-ray and radiotherapy 

equipment, industrial sources);
•  large petrol storage facilities;
•  waste water discharges;
•  dumping at sea activities.

National Environmental Enforcement
•  Conducting an annual programme of audits and inspections of 

EPA licensed facilities.
•  Overseeing local authorities’ environmental protection 

responsibilities.
•  Supervising the supply of drinking water by public water 

suppliers.
•  Working with local authorities and other agencies to tackle 

environmental crime by co-ordinating a national enforcement 
network, targeting offenders and overseeing remediation.

•  Enforcing Regulations such as Waste Electrical and Electronic 
Equipment (WEEE), Restriction of Hazardous Substances 
(RoHS) and substances that deplete the ozone layer.

•  Prosecuting those who flout environmental law and damage the 
environment.

Water Management
•  Monitoring and reporting on the quality of rivers, lakes, 

transitional and coastal waters of Ireland and groundwaters; 
measuring water levels and river flows.

•  National coordination and oversight of the Water Framework 
Directive.

•  Monitoring and reporting on Bathing Water Quality.

Monitoring, Analysing and Reporting on the 
Environment
•  Monitoring air quality and implementing the EU Clean Air for 

Europe (CAFÉ) Directive.
•  Independent reporting to inform decision making by national 

and local government (e.g. periodic reporting on the State of 
Ireland’s Environment and Indicator Reports).

Regulating Ireland’s Greenhouse Gas Emissions
•  Preparing Ireland’s greenhouse gas inventories and projections.
•  Implementing the Emissions Trading Directive, for over 100 of 

the largest producers of carbon dioxide in Ireland.

Environmental Research and Development
•  Funding environmental research to identify pressures, inform 

policy and provide solutions in the areas of climate, water and 
sustainability.

Strategic Environmental Assessment
•  Assessing the impact of proposed plans and programmes on the 

Irish environment (e.g. major development plans).

Radiological Protection
•  Monitoring radiation levels, assessing exposure of people in 

Ireland to ionising radiation.
•  Assisting in developing national plans for emergencies arising 

from nuclear accidents.
•  Monitoring developments abroad relating to nuclear 

installations and radiological safety.
•  Providing, or overseeing the provision of, specialist radiation 

protection services.

Guidance, Accessible Information and Education
•  Providing advice and guidance to industry and the public on 

environmental and radiological protection topics.
•  Providing timely and easily accessible environmental 

information to encourage public participation in environmental 
decision-making (e.g. My Local Environment, Radon Maps).

•  Advising Government on matters relating to radiological safety 
and emergency response.

•  Developing a National Hazardous Waste Management Plan to 
prevent and manage hazardous waste.

Awareness Raising and Behavioural Change
•  Generating greater environmental awareness and influencing 

positive behavioural change by supporting businesses, 
communities and householders to become more resource 
efficient.

•  Promoting radon testing in homes and workplaces and 
encouraging remediation where necessary.

Management and structure of the EPA
The EPA is managed by a full time Board, consisting of a Director 
General and five Directors. The work is carried out across five 
Offices:
•  Office of Environmental Sustainability
•  Office of Environmental Enforcement
•  Office of Evidence and Assessment
•  Office of Radiation Protection and Environmental Monitoring
•  Office of Communications and Corporate Services
The EPA is assisted by an Advisory Committee of twelve members 
who meet regularly to discuss issues of concern and provide 
advice to the Board.
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Executive Summary

Water resources can be damaged by pollution of many 
kinds, from a variety of sources. European Union 
directives have been transposed into Irish national 
legislation to ensure that the quality of natural waters is 
protected. Water quality monitoring programmes play a 
key role, but testing is predominantly laboratory based, 
costly and inherently intermittent. These factors drive 
research to develop affordable, reliable sensors that 
can be deployed in the field, act autonomously, and 
provide readings in real time. A wide variety of sensing 
technologies have been created by the global research 
community. Typically, individual sensors target specific 
parameters, and some approaches require chemical 
reagents as part of the method. The concept behind 
this project was to create a sensing technology that 
does not require reagents and can detect multiple 
parameters.

Previous research and the literature indicated 
that Raman spectroscopy combined with artificial 
intelligence (AI) methods could be a feasible way to 
detect certain target analytes in water. The vision of 
the project was to use these technologies to pursue an 
innovative, low-cost autonomous system for detection 
of nutrients (nitrates and phosphates) and pathogens 
(Escherichia coli in particular) in water, and capable of 
operating in close to real-time. A Lab-on-Chip (LOC) 
model was envisaged as the ideal project outcome.

The project has verified the hypothesis by developing 
and testing Watermon, an end-to-end Raman 
spectroscopy-based detection system that uses 
suitably trained AI models to detect nitrates and, to 
some extent, E. coli. A user interface allows results to 
be viewed on mobile phones or personal computers. 
However, it was not possible during this project to 
adequately isolate phosphate Raman signatures to 
allow this approach to succeed.

An iterative approach to system development allowed 
parallel progress on different aspects of the project, 
which mitigated the risks and technical challenges of 
creating the LOC version.

Four hardware versions were developed:

1.	 Laboratory version: the basis for the project, to 
enable results verification.

2.	 Transportable Car-boot version: to conduct testing 
and rapid detection in the field and gather data for 
model training.

3.	 Buoy version: for autonomous operation when 
deployed in a river or other water body.

4.	 LOC version: a reduced-scale sensing instrument, 
compatible with either a Car-boot or Buoy 
platform; this version was partially achieved.

An AI model for nitrate detection was very effective 
(> 99% accuracy) at detecting nitrates at 30 mg/l or 
above in river and drinking water. The accuracy of 
the method may be affected by changing the system 
variables, i.e. integration time or number of averages 
used. Accuracy would be expected to increase and/or  
the detection limit would be expected to reduce, by 
using larger labelled training datasets.

The E. coli labelled training datasets model was 
able to detect a level of E. coli at 250 colony-forming 
units (cfu) with cross-validation accuracy of 83.4%. 
At such levels, it was not possible to identify positive 
E. coli samples by traditional analysis of the data, 
i.e. inspection of a single spectrum, underscoring 
the superior ability of the AI model, albeit at relatively 
higher concentrations, i.e. 250 cfu. The success of 
the Watermon platform is predicated on good-quality 
calibrated data being used to train the AI model. 
It could be expected that, with larger quantities of 
calibrated E. coli training data, detection accuracy 
levels of the E. coli model could improve significantly.

We drew the following specific conclusions:

1.	 AI models can be successfully trained to detect 
water quality parameters, in close to real time, in 
conjunction with Raman spectroscopy.

2.	 The system detected nitrate at 30 mg/l, at an 
accuracy (confidence) level of 99%.

3.	 The system can detect E. coli at concentrations 
c. 250 cfu, with 83.4% confidence levels.

4.	 The full end-to-end Car-boot and Buoy systems 
operate in close to real time, i.e. sub-5 minutes 
from the end of collection of the Raman spectra to 
receipt of the results on a mobile device.
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5.	 The system depends on the availability of 
good-quality suitable labelled data to train the AI 
models. Additional data can improve the system 
accuracy, through iterative re-training of the 
models.

6.	 The LOC version of the system has successfully 
detected E. coli at high concentrations.

7.	 Phosphate detection proved inconclusive in 
testing – the Raman signature of this compound 
was not as amenable to detection using the 
equipment employed in this project.
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1	 Introduction

1.1	 Project Background

Ireland’s water resources face continuous challenges 
in several respects, in common with countries across 
the European Union (EU) and other regions of the 
world. Significant problems can arise because of 
pollution of natural waters. Pollution can be of many 
types, and from various sources; its effects can include 
damage to human health and aquatic life, either from 
direct contact with the water or from ingestion of 
contaminants.

In developed countries, drinking water is commonly 
produced by abstracting water from natural 
watercourses, and treating it to a potable standard. 
However, some polluting compounds can be difficult 
and/or expensive to remove during treatment, resulting 
in those compounds emerging into the public water 
supply. On the other hand, natural watercourses and 
coastal areas are also the most common route for 
disposal of wastewater from human activity, whether 
the wastewater originates from agricultural, industrial 
or municipal sources These activities also present 
risks to the quality of natural waters that are used for 
recreational purposes, such as bathing.

The EU has adopted directives for Member States that 
specifically address the issues relating to the quality 
of natural waters. In particular, the Water Framework 
Directive (WFD) (EU, 2000) requires Member States to 
implement a whole-of-system approach to catchment 
management, including monitoring water quality in 
a systematic way. In addition, the Bathing Water 
Directive (EU, 2006) specifies water quality standards 
for recreational uses, again involving programmes of 
water quality monitoring. Such monitoring typically 
takes the form of regular water sampling of the water 
body in question, followed by laboratory analysis of the 
samples for parameters of interest.

This approach has some inherent drawbacks. First, it 
is costly in terms of staff time to collect samples and 
carry out laboratory testing. Second, by its nature, 
testing is periodic, not continuous, and so is best 
suited to monitoring the overall/background level of 
water quality. However, individual pollution incidents 
can easily be missed by this approach. These factors 

provide the motivation to develop water quality 
sensors that can operate “in the field”, in a continuous, 
autonomous manner, and communicate results via 
a suitable protocol, chiefly a wireless method such 
as 3G or long-range radio (LoRa). In this way, a 
network of affordable field sensors can act as an 
early-warning/“red flag” detection system, which would 
trigger action on the part of relevant authorities or 
operators of the system. Responses could include: 

●● dispatching personnel in a targeted manner to 
collect samples for detailed laboratory testing, to 
verify the initial reading; 

●● initiating preventative action at a water treatment 
works, such as turning off abstraction pumps, to 
avoid drawing unwanted pollutants into the plant; 
or

●● initiating pollution control action.

For these reasons, a significant amount of research 
has been carried out internationally to develop such 
sensors, using a variety of approaches. In December 
2016, the Environmental Protection Agency (EPA) 
in Ireland, as part of its competitive Research Call, 
awarded the Cork Institute of Technology (CIT) – now 
incorporated into Munster Technological University 
(MTU) – funding for a project entitled Innovative 
Water Monitoring, or Watermon. The project was a 
collaboration between MTU and a private company, 
Hydrolight Ltd. Two MTU research centres contributed 
to the project: the Centre for Advanced Photonics 
and Process Analysis (CAPPA) and the Nimbus 
Research Centre for Embedded and Cyber-Physical 
Systems (Nimbus). Previous research and the 
literature indicated that Raman spectroscopy (RS) 
can be effective in detecting target analytes in 
water, when combined with artificial intelligence (AI) 
methods (Wang et al., 2018; Mei and Liu, 2019; Xu 
and Jackson, 2019). Therefore, the project aimed to 
create and demonstrate an innovative technique for 
water quality monitoring using RS and AI, capable of 
operating in “close to real time”.

The project was subdivided into the following 
elements:

●● RS (the main sensing technology), led by CAPPA;
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●● AI software for the detection of selected target 
analytes, led by Hydrolight; and

●● other necessary hardware and systems to support 
the sensing technology, e.g. data and power 
management, communications, led by Nimbus.

The project received material support from the team 
working on the System for Bathing Water Quality 
Monitoring (SWIM) Project at University College Dublin 
(UCD), an EU INTERREG VA Programme project. This 
support was in the form of access to water samples 
and laboratory test results arising from SWIM’s work in 
the Dublin area.

The project also collaborated with the University of 
Jena, Germany, in the form of access to innovative 
technology to help improve pathogen detection via 
concentration techniques, at the ‘Lab-on-Chip’ (LOC) 
scale.

1.2	 Objectives

The ultimate aim of the project was to develop an 
adaptable integrated water quality monitoring system, 
based on RS and AI, having the following features: 
autonomous operation; rapid detection; reasonable 
detection accuracy; low cost of manufacture; and 
flexibility of analyte targeted.

The project plan envisaged a LOC system, i.e. a 
miniaturised integrated sensing platform for detection 
of water quality parameters, aimed at both drinking 
water and bathing water applications. In overall terms, 
the project achieved a significant step towards the 
realisation of this vision, through the development 
and demonstration of a prototype RS-based sensing 
system/platform [to technology readiness level 
(TRL) 7]; as well as an early-stage version of a LOC 
sensor using RS (to TRL c 3), for future deployment in 
the sensing platform, once it has been advanced to a 
higher TRL.

The main objectives of the project are to develop:

1.	 an RS device into a transportable unit suitable for 
taking readings in the field;

2.	 AI algorithms for RS-based detection, targeting 
nutrients and E. coli;

3.	 a database with operational data from trials;

4.	 a fully operational end-to-end detection system, as 
a LOC and to demonstrate it;

5.	 suitable monitoring software and demonstrate it.

The objectives have been substantially achieved, or 
progress has been made towards achieving them, in 
all cases.

1.3	 Methodology

The primary objective of the project was to develop 
an initial version of the proposed system, i.e. an 
operational, end-to-end water quality monitoring 
system, using a combination of RS and AI, to detect 
selected target analytes: nitrates, phosphates and 
E. coli. The project aimed to combine a novel mix 
of technologies and processes, namely photonics, 
microfluidics, RS, glass microchip fabrication, AI 
software and big data management. An iterative 
hardware development was used to advance different 
aspects in parallel, i.e. hardware and collection of AI 
data. So, the Raman hardware was developed in four 
successive versions. The AI system places reliance on 
the availability of labelled calibration data, generated 
in part through the project team’s work and in part 
through the assistance of the SWIM Project at UCD. 
The AI system consists of two models, one each for 
nitrates and E. coli detection, as well as the necessary 
data management and presentation layers.

1.4	 Report Structure

The remainder of this report is structured as follows:

●● Chapter 2 reports on a literature review carried 
out primarily to determine the state of the art in RS 
and AI for water quality parameters.

●● Chapter 3 provides an overview of the available 
hardware relating to RS and the project’s 
hardware development strategy.

●● Chapters 4–7 describe the four versions of the 
hardware system that were developed as part of 
the project, and the objectives, description, testing 
and results arising from each version.

●● Chapter 8 describes the AI diagnostic models.
●● Chapter 9 covers the main project outcomes. 
●● Chapter 10 presents conclusions and 

recommendations.
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2	 Literature Review

2.1	 Introduction

The Innovative Water Monitoring (Watermon) 
project was carried out in the context of national 
and international water quality concerns and related 
issues. It aimed to develop an innovative approach 
to water quality monitoring, harnessing spectroscopic 
techniques combined with AI for data analysis, in 
close to real time. Therefore, this literature review is 
arranged in three main parts. First, the context and 
background to the project is described. Second, the 
state of the art in RS, the main sensing technology 
being developed, and specifically as it applies to water 
quality monitoring, is investigated. Finally, the state of 
the art regarding the application of AI methods to this 
domain is reported.

2.2	 Water Quality and the Irish 
Environment

Water in Ireland is a major and valued natural 
resource, and access to good-quality potable water 
offers significant competitive advantages to sectors 
such as industry, agriculture and tourism. Water is 
a resource that must be managed effectively, and 
the improvement of its quality has been noted as 
a national priority for Ireland (EPA, 2014). Water is 
under pressure from increasing pollution, rising global 
populations and changes in demographics, increasing 
urbanisation, climate change, land use and economic 
activities (e.g. industry, agriculture). As a resource, 
water not only plays a part in sustaining life, but it 
also plays a fundamental role in ecosystem support, 
economic recovery and development, as well as 
community and social well-being (EPA, 2013).

As observed in the EPA report Ireland’s Environment – 
An Assessment 2016, “while Ireland’s waters might 
be among the best in Europe, we are still a long 
way from meeting the full legal requirements of the 
Water Framework Directive, against which water 
quality is measured”. The same report also states 
“elevated nutrient concentrations (phosphorus and 
nitrogen) continue to be the most widespread water 
quality problem in Ireland, arising primarily from 
human activities such as agriculture and waste water 

discharges to water from human settlements, including 
towns, villages and rural houses” (EPA, 2016). These 
activities, as well as physical impacts on habitats from 
excess fine sediment and forestry, are also described 
as “significant pressures impacting water quality” in 
the EPA report Water Quality in Ireland 2013–2018 
(O’Boyle et al., 2019).

Good-quality bathing water is also a highly desirable 
natural resource for recreational use as well as being 
an important economic factor for tourism. Public health 
safety and reducing the risk of illnesses, especially 
for outbreaks of E. coli and intestinal enterococci, is 
an over-riding concern. In particular, the impacts of 
pollution from urban run-off, wastewater discharges 
and agricultural sources – especially after heavy rain – 
are a continuing threat, particularly in more built-up 
areas (Webster and Lehane, 2015). The release of 
nutrients (nitrogen, phosphorus and potassium) and 
agrochemicals from intensive agriculture and animal 
waste accelerates the eutrophication of freshwater 
and coastal marine ecosystems and increases 
this pollution (Herbert et al., 2015). High nutrient 
concentrations in water can result in adverse human 
health impacts, such as ‘blue baby’ syndrome, which 
can be caused by high nitrate levels in drinking water 
(WHO, 2016). Inappropriate use of pesticides can 
pollute water resources with carcinogens and other 
toxic substances that can adversely affect human 
health and aquatic life (Raich, 2013). In addition to 
nutrients and pesticides, the accumulation of salt in 
soils can also be very harmful to water bodies. High-
saline water alters geochemical cycles of other major 
elements – e.g. carbon, nitrogen, phosphorus, sulfur, 
silica and iron – thereby impacting ecosystems.

Legislation has been developed and implemented at 
national level to transpose the EU WFD (EU, 2000), 
which was adopted in 2000 as a single piece of 
legislation, covering rivers, lakes, groundwater, and 
transitional (estuarine) and coastal water. Ireland’s 
national regulations implementing the directive are the 
European Communities (Water Policy) Regulations 
2003 (Government of Ireland, 2003). Article 10(1) 
of these regulations requires a programme of 
monitoring of water status, to provide a coherent 
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and comprehensive overview of water status within 
each of the river basins in the State in accordance 
with Articles 7(1) and 8 of the Directive (EPA, 2006). 
Similarly, the national regulations giving effect to 
Bathing Water Directive 2 also require monitoring of 
bathing water quality (Government of Ireland, 2008).

The drivers described above have led to the 
implementation of water quality monitoring 
programmes in Ireland and across the EU. However, 
a rapid alert and response to a pollution incident can 
be critical, to minimise impacts. Apart from knowing 
where and when to take samples for analysis, one of 
the biggest challenges is the time required and cost 
of investigating whether or not the water is safe for 
drinking, bathing, or for other uses. This is because 
the methods usually involve field collection and 
transportation of samples to a laboratory, and in the 
case of some tests, such as for pathogens, sample 
preparation by culturing, followed finally by analysis. 
These challenges apply for nutrients, pathogens 
and other compounds, such as priority hazardous 
substances (PHSs) (EU, 2007; Regan et al., 2013). 
Together, these factors act as drivers in the effort to 
develop water quality monitoring sensors that can act 
continuously in real time, detecting the presence and 
concentration of relevant parameters in a cost-effective 
manner.

There are numerous examples of previous projects 
in this overall area of real-time water quality 
monitoring. These can be focused on particular sensor 
development, typically targeting single parameters for 
detection, or on systems integration to demonstrate 
end-to-end functionality. A variety of detection 
technologies have been explored through such 
research. The following project examples, and their 
associated summary descriptions, illustrate some of 
the related research activity in the field:

●● Aquarius: H2020-ICT-2016-1 – 731465 
(2017–2020): “Broadband Tunable QCL Based 
Sensor for Online and Inline Detection of 
Contaminants in Water.” The project aims to detect 
hydrocarbon contaminants in water (oil-in-water 
contaminations). It “aims to provide improved 
online and inline sensors in terms of quality and 
effectiveness, permitting reliable and continuous 
real-time monitoring on site. The new sensors 
will be made possible by the use of a new class 
of external cavity (EC) quantum cascade lasers 
(QCL) and detectors.” (AQUARIUS, 2020).

●● WaterSpy: H2020-ICT-2016-1 – 731778 (2016–
2020): “High-sensitivity, portable photonic device 
for pervasive water quality analysis.” WaterSpy 
uses “photonics technology suitable for inline, 
field measurements, operating in the 6- to 10-μm 
region. The solution is based on the combined use 
of advanced, tuneable quantum cascade lasers 
(QCLs) and fibre-coupled, fast and sensitive 
higher operating temperature photodetectors. 
Together with these new components, optimised 
laser driving and detector electronics as well as 
laser modulation will be developed. Attenuated 
total reflectance spectroscopy will be used to 
give rise to the biochemical profile of the surface 
chemistry of the sample. Targeted analytes will be 
specific heterotrophic bacterial cells. Several novel 
techniques are employed in order to increase the 
SNR [signal-to-noise ratio], including antibodies 
capable of binding the targeted analytes and 
a novel pre-concentration method.” (CORDIS, 
2020a).

●● SmartWater4Europe (2014) Seventh Framework 
Programme project. This is “an example of a 
systems integration and technology demonstration 
project aimed to deploy innovative sensing, 
information and communication technology 
(SICT) solutions of European SMEs [small and 
medium-sized enterprises] on 4 demonstration 
sites for selected smart water networks (SWNs) 
applications to improve current practice of water 
supply management and quality control, under 
the headings of leak detection, water quality 
management, energy optimisation and customers’ 
interaction.” (SW4EU, 2020).

●● EU-SWIM: INTERREG VA Programme. This is “a 
cross-border research programme for developing 
a system for live bathing water monitoring… The 
aim is to develop a system that will allow bathers 
to check the water quality of their chosen bathing 
spots live … through use of a specially designed 
app on their smart phones.” (EUSwim, 2020).

●● LIFE Ecosens Aquamonitrix – LIFE17 ENV/
IE/000237: “Enhanced Portable Sensor for Water 
Quality Monitoring, moving to genuinely integrated 
Water Resource Management.” This project 
“consolidates research outputs from previous 
R&D [research and development] projects to 
demonstrate & bring to market a novel water 
quality monitoring integrated solution, focusing on 
nutrients in water, to meet the requirements for 
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frequent water quality monitoring under the Water 
Framework Directive.” (Ecosens, 2020).

●● ColiSense Online: “Online and Automated E. coli 
Monitoring for 100% Safe Drinking Water. This 
is a Horizon 2020 (H2020) SME instrument, i.e. 
an industry-led project, whose objective is to 
develop a low-cost, low-threshold E. coli detection 
method for drinking water, using flow cytometry 
with a laser diode operating at 488 nm.” (CORDIS, 
2020b; bNovate Technologies, 2020).

●● CYTO-WATER: “Integrated and Portable Image 
Cytometer for Rapid Response to Legionella and 
Escherichia coli in Industrial and Environmental 
Waters.” This project uses a fluorescence 
method for detecting Legionella and E. coli, with 
quantification requiring c. 2 hours; it requires 
pre-concentration of samples. The project has 
provided some promising results (CORDIS, 2017).

2.3	 Review of Current State 
of Knowledge – Raman 
Spectroscopy

Photonics-based sensors have particular practical 
advantages for water quality monitoring, in that they 
are non-destructive, can be deployed in situ, can 
operate without the use of consumables, and can 
provide results in close to real time (unlike chemical 
or microbiological analysis). Techniques such as 
fluorescence analysis are popular and powerful, but 
the spectral signatures are broad and the emission 
spectra of different substances often overlap. Both RS 
and mid-infrared (MIR) spectroscopy directly measure 
the energies of the chemical bonds that make up 
the substances of interest. However, However, MIR 
wavelengths can be absorbed during passage through 
water, which creates a fundamental obstacle to their 

use for water quality monitoring. RS is therefore the 
most promising photonics-based sensing option 
to exploit the above advantages for water quality 
monitoring.

RS is a potentially powerful detection basis, as it offers 
the possibility of monitoring water in situ and in real 
time. RS is based on Raman scattering, one of the 
effects that occurs during the interaction of light with 
matter.

The interaction of light and matter can result in light 
being absorbed or scattered (and scattering may be 
elastic or inelastic). Alternatively, there may be no 
interaction and light may be transmitted or reflected 
(Long, 2002). If the scattering is elastic (without 
energy losses), the wavelength of the emitted light 
will be the same as that of the incident light, as shown 
by the energy transition levels in Figure 2.1a. This 
effect is also known as Rayleigh scattering, and it is 
responsible for the blue colour of the sky, for example. 
(In this case, particles present in the atmosphere 
interact with sunlight, causing scattering of light. 
However, this light scattering strongly depends on 
the size of the particles, their separation and the 
wavelength of the incident light. If the particles are 
sufficiently separated and their size is small, then they 
cause strong scattering of short wavelengths in the 
visible spectra. This selective scattering of visible light 
causes blue light to scatter significantly more than red 
light. As a result, blue light reaches our eyes more 
effectively than the rest of the spectra during clear 
days, thus making sky appear blue.) 

Alternatively, scattering can be inelastic, i.e. involving 
energy loss or gain, and this is called Raman 
scattering. However, in this process, only a small 
fraction of light is scattered, which depends on the 
chemical structure of the sample.

Figure 2.1. Raman scattering scheme. (a) Classical theory and (b) quantum mechanics.
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From the point of view of classical physics, the 
Raman effect is based on the distortion of the electron 
distribution (electron cloud) of a molecule, caused by 
the electric field of the incident radiations during the 
scattering process. An induced electric dipole moment, 
caused by the oscillating incident radiation, results 
in periodic deformation of molecules, as a result of 
which molecules start vibrating with a characteristic 
frequency. This can be shown as P = αE, where P 
is the dipole moment, α is the polarisability of the 
molecule (the ease of distortion of the electron cloud of 
a molecule by an electric field) and E is the strength of 
the electric field (Long, 2002).

From the point of view of quantum mechanics, when 
photons interact with a molecule, excitation of the 
molecule results in an increase in its energy state 
from the ground energy state to a virtual energy state 
(Smith and Dent, 2005). This virtual state is not a 
real energy level; it is transient, since the state is not 
stable, and when the molecule relaxes a photon is 
re-radiated.

In Rayleigh scattering the photon released in the 
molecule relaxation process has the same energy as 
the incident photon (laser incident radiation), as shown 
in Figure 2.1b. This forms the majority of the scattered 
energy.

However, if during the relaxation process from the 
virtual state the molecule drops back down to a 
different vibrational state – via processes called 
Stokes or anti-Stokes scattering – the difference in 
energy level results in a shift in the wavelength of 
the scattered light (University of Cambridge, 2020). 
RS detects this shift.

In RS, excitation energy is typically provided by laser 
light and a spectrometer is used to detect photons 
arising from all types of scatter. However, compared 
with Rayleigh scattering, the Raman signal is much 
weaker, being responsible for only 0.001% of incident 
light (Princeton Instruments, undated). For this reason, 
in order to reduce Rayleigh scattered light, and to 
obtain useful information from Raman effects, suitable 
filters must be employed on the light received by the 
spectrometer.

The energy difference between the incident light 
(laser) and the transitions allowed in Figure 2.1b can 
be plotted. This plot is known as Raman shift and is 
usually expressed in wavenumbers. The transitions 

provide specific information about the molecules, or 
fingerprint, allowing the molecule to be identified.

The potential of RS to analyse and monitor 
contaminants has long been reported (Gowen, 
2012; Zhen et al., 2016). In addition, because water 
is a weak Raman scatterer, RS is superior to other 
vibrational spectroscopies (Zhiyun et al., 2014), 
allowing the detection of specific target compounds 
in liquid samples, and also tissue imaging in 
some applications such as biomedical diagnosis 
(Keren et al., 2008; Popp et al., 2011). RS has 
become established as an optical rapid detection 
technique (Das and Agrawal, 2011) that generates a 
spectroscopic fingerprint for the samples, and provides 
quantitative and qualitative information that can be 
used to characterise, discriminate and identify at a 
cellular level (Harz et al., 2014).

Zhang et al. (2006) found that Raman spectra can 
be used to measure pesticides on the surfaces of 
vegetables and fruits in situ, and that current Raman 
instrumentation technology enables the recording of 
reliable and repeatable spectra in pesticide monitoring 
applications. It was found that at 1064 nm excitation 
wavelength, pesticides can be detected (Zhang et al., 
2006). A range of contaminants have been detected 
using spectrographic techniques. These include 
Cryptosporidium and Giardia, E. coli, enterococci, 
pesticides, polyaromatic hydrocarbons (PAHs) and 
heavy metals (Zhiyun et al., 2014). 

The detection of nutrients such as nitrates using RS 
was reported by Sadate et al. (2011), who used a 
portable stand-off RS system to detect ammonium 
nitrate (NH4NO3) and sodium nitrate (NaNO3) dissolved 
in water. They reported a limit detection of 200 mg/l for 
ammonium nitrates and of 50 mg/l for sodium nitrates. 
Durickovic and Marchetti (2014) were able to detect a 
minimum nitrate concentration of 100 mg/l, also using 
a portable Raman system. However, they used a laser 
source in the visible range (532 nm wavelength), which 
can produce high fluorescence signal when used to 
analyse river water that contains a large amount of 
organic matter that fluoresces when excited with light 
in the visible range.

Ben Mabrouk et al. (2013) reported the analysis of 
different sulfates in two states: solid and aqueous 
solution. They reported on the effect of ionic 
substitutions on the Raman band positions of different 
vibrations and showed that the sulfate environment 
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is barely affected by the nature of the cations when 
the salt is in the form of aqueous solution; however, 
when sulfates are found in solid form, the sulfate 
environment can be affected by the nature of the 
cations. Kauffmann and Fontana (2015) reported the 
simultaneous detection by RS of pollutants, such as 
nitrates, sulfates and chlorides, dissolved in water, 
and also provided the concentrations for the same 
compounds using chemometric methods.

The development of substrates to enhance 
Raman scattering is also explored in the literature; 
for example, Gajaraj et al. (2013) used a gold 
nanosubstrate (a gold-coated silicon material) to 
detect nitrate and nitrite in water and wastewater. 
Profiting from surface-enhanced RS (SERS), they 
were able to detect nitrate with linear ranges of 
1–10,000 mg NO3

–/l. The authors also pointed out 
that phosphate appeared to be the major interfering 
anion among the common anions affecting nitrate 
measurement. Nevertheless, the percentage error of 
nitrate measurement in wastewater by the proposed 
SERS method was comparable to that of ion 
chromatography.

More recently, Zeng et al. (2019) proposed a 
portable Raman SERS chip based on commonly 
used filter paper and silver nanoparticles (AgNP). 
They presented a smartphone-based portable 
Raman spectrometer equipped with a laser of 
785 nm wavelength and operated by a touch-screen 
application as the human–machine interface. The 
Raman detection module can be attached to or 
removed from the smartphone through the smartport 
interface, i.e. it does not affect the normal use of the 
smartphone. Moreover, Zeng et al. (2019) appear 
to be the first to report the use of a smartphone as 
a miniaturised Raman spectral analyser. Although 
the system is portable, the use of AgNPs may cause 
some problems owing to silver oxidation affecting the 
SERS efficiency in biosensing. In addition, the authors 
applied the sensor only for standard sample dyes such 
as rhodamine 6G and crystal violet, which provides the 
proof of concept. There are currently no tests using 
real-world samples to prove sensor reliability; however, 
this work demonstrates the improvement and progress 
towards miniaturisation of instrumentation using RS, 
enabling the implementation of more compact set-ups, 
albeit the particular set-up described has significant 
limitations on its usefulness.

The scientific community has also explored to some 
extent the use of more compact microfluidic-based 
systems targeting bacterial detection. McClain et al. 
(2001), for example, demonstrated flow cytometry of 
E. coli on microfluidic devices and found that microchip 
flow cytometry has the potential to be a cost-effective 
and portable alternative to conventional flow cytometry. 
The potential of such a microenvironment offers the 
prospect of fine manipulation of target analytes using 
on-chip techniques such as flow cytometry, laser 
tweezer and hydro-focusing. However, the microfluidic 
environment also suffers from practical disadvantages, 
such as potential for channel blockage.

The application of silicon nitride (Si3N4) waveguide 
layers instead of silicon can extend the range of 
excitation and detection frequencies to the entire 
visible and near-infrared wavelength range, which is 
particularly relevant for RS (Dhakal et al., 2014). One 
important advantage is the fact that the high refractive 
index contrast in a Si3N4 waveguide helps to enhance 
the electric field strength of a guided mode for a given 
mode power (Dhakal et al., 2013). This enhancement 
can be boosted further through either resonant cavity 
enhancement and/or plasmonic enhancement by 
means of metallic nanostructures in the vicinity of the 
waveguides (Peyskens et al., 2013).

Modern LOC devices are hybrids that combine 
glass, silicon and various polymers such as acrylic, 
polyester, polycarbonate, resists, thermoplastics or 
moulds like polydimethylsiloxane (PDMS). Precision, 
miniaturisation, cost-effectiveness, large-scale 
production and ability to incorporate electronics make 
these materials very attractive (Giannitsis, 2011). 
Ashok et al. (2011) reported the implementation of 
fibre-based microfluidic RS, in which they embedded 
optical fibre probes into a PDMS-based microfluidic 
chip. They were able to detect urea at a concentration 
of 80 mM over an acquisition time of 5 seconds with 
200 mW excitation power. The microfluidic chip can 
be used to replace the fibre-optic Raman probe. 
The use of soft lithography-based fabrication and 
standard optical fibres makes this device at least 
two orders of magnitude cheaper than commercially 
available fibre-optic Raman probes. In addition, PDMS 
presents advantages such as optical transparency, 
cost-effectiveness and ease of moulding, it allows 
complex fluidic systems to be built, is inert and is non-
toxic. However, such systems are usually not rugged, 
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which may cause flow profile problems due to leakage 
and/or uneven pressure (Kim et al., 2010; Chen et al., 
2016). The fabrication efficiency of soft lithography is 
low, making it labour-intensive (McDonald et al., 2001). 
Moreover, fast adjustment of device features is almost 
impossible without the fabrication of a new mould.

A technology that has recently emerged as an 
alternative fabrication method for microfluidics is 
three-dimensional (3-D) printing, which has shown the 
potential to address many of the problems associated 
with PDMS devices (Gross et al., 2014). Compared 
with the labour-intensive and multiple-step soft 
lithography process (Xia and Whitesides, 1998), 3-D 
printing can potentially fabricate a microfluidic device 
in one step (Kitson et al., 2012). In addition, 3-D 
printing allows quick adjustment of device features with 
each print by changing the design in the computer-
aided design (CAD) software (Chen et al., 2016).

De Coster et al. (2015) presented a microfluidic chip in 
polymethyl methacrylate (PMMA) for optical trapping 
of particles through microchannel and single-mode 
fibres separated from the microfluidic channel by thin 
PMMA walls with a width of 70 µm. The walls prevent 
contamination of the trapping fibres by the sample fluid 
flowing in the microchannel (De Coster et al., 2015). 
Particle trapping can assist in obtaining the Raman 
signal.

Another study that makes use of microfluidic and 
optical fibres is described by Dochow et al. (2013), 
who built quartz microfluidic chips, embedded 
innovative multi-core single-mode fibres integrated 
with Bragg gratings for detection. The Bragg gratings 
work as a notch filter for the Rayleigh scattering. They 
reported an improvement of more than two orders 
of magnitude compared with previous fibre-based 
microfluidic Raman detection schemes.

The technique of dielectrophoresis allows the spatial 
manipulation of particles through the interaction of 
the sample with a non-uniform electric field (Pething, 
2010) and can be used to concentrate bacteria to 
enhance the Raman signal. The technique has great 
potential because it allows the spatial manipulation 
of cells and bacteria without the need for biochemical 
labels or other bioengineered tags (Qian et al., 
2014; Pething et al., 2014)., The University of Jena 
in Germany obtained the most advanced version of 
a microfluidic chip to capture the Raman spectra of 
bacteria and demonstrated clinical applicability of 

the dielectrophoresis chip device by testing E. coli 
susceptibility to the commonly prescribed second-
generation fluoroquinolone antibiotic ciprofloxacin 
(Schröder et al., 2017).

Microstructured waveguides built by femtosecond 
laser inscriptions also have also proven to be a good 
alternative to more compact RS (Chen et al., 2018). 
Such waveguides could be incorporated in integrated 
Raman laser platforms for biomedical applications. 
Professor Roberto Osellame’s group in Italy is expert 
in the field; a recent paper described the principles 
and applications of femtosecond laser 3-D micro- and 
nanofabrication for LOC applications (Sima et al., 
2018). The unique advantage of femtosecond laser 
processing over conventional methods resides in 
the capability of sculpturing complex 3-D shapes at 
micro- and nanoscales in both inorganic and organic 
transparent materials. Indeed, by employing focused 
ultrashort pulses with extremely high peak intensities, 
one can precisely set the interaction region at a 
localised area of either surfaces or in volume (Sima 
et al., 2018). Although these systems have not been 
applied so far as Raman platforms, they could be 
explored in further work.

2.4	 Application of Artificial 
Intelligence to Sensing

Water systems should maintain a good chemical 
and ecological status to protect natural ecosystems 
and biodiversity, water supply and, of course, human 
health. Reviewing the ecological status of water 
systems in a comprehensive way would greatly benefit 
from improved water quality monitoring approaches 
(Voulvoulis et al., 2017). To date, many substances 
such as nitrates and phosphates in water systems 
are monitored through low-frequency discrete 
assessment campaigns. To reduce the possibility 
of eutrophication, nutrient monitoring is crucial. 
Eutrophication, the overenrichment of nutrients in 
the water system, is a major water quality issue that 
can result in fish deaths, unhealthy ecosystems and 
public health issues. Monitoring for substances such 
as nitrates, phosphates and E. coli would benefit from 
the introduction of real-time monitoring leveraging 
well-trained AI data models. The use of always-online 
water monitoring platforms has been acknowledged 
as providing great value (Viviano et al., 2014; Valkama 
and Ruth, 2017), whereas low-frequency testing can 
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lead to under-reporting of risks (Brack et al., 2017), 
with consequences.

A number of water-testing systems are commercially 
available, such as ion-selective electrodes (ISEs), 
but these have been shown to be prone to error, e.g. 
readings can be temperature dependent and frequent 
calibration can be required (Thompson, 2005). Another 
approach is, of course, to use wet chemical analysers 
or optical sensors, which can show greater detail but 
have the downside of being expensive (Pellerin et al., 
2016). Traditional models are used to compute models 
such as effluent discharge models and watershed 
models, but, of course, the complex relationships of 
input variables or data sources and infrequency of the 
inputs to these models can result in a weak model. 
An alternative to these more traditional models are 
machine learning models, which can be deployed 
online with high availability ready to receive data 
from source and provide a fast alternative to time-
consuming, expensive, infrequent laboratory chemical 
analysis (Wang et al., 2018).

The use of machine learning models to predict water 
quality has been attempted in many research projects 
(Schilling et al., 2017; Steffy and Shank, 2018). It has 
been demonstrated that non-linear machine learning 
models do have advantages over linear regression. 
Non-linear models have been shown to perform poorly 
on high-dimensional complex datasets. In this case the 
RS signal is a non-trivial dataset (Kuhar et al., 2018), 
and machine learning models have been shown to 
perform well with similarly complex datasets whose 
key features or relationships can be difficult to identify 
(Xu and Jackson, 2019). Ensemble-based tree-based 
machine learning models have been shown to perform 
particularly well with such datasets, including Random 
Forests (RFs) and quantile regression forests (Francke 
et al., 2008).

Arising from these factors, continuous high-frequency 
water monitoring is becoming a critical part of water 
management (Bowes et al., 2015). Sensor technology 
development continues to provide improvements 
in data gathering; however, processing such data 
effectively using traditional testing or statistical 
models has proved challenging. This is where AI can 
play a key role in processing high-throughput data 
samples. AI models have been used successfully to 
make estimations by means of data-driven models 
(Casanovas-Massana et al., 2015; Zhang et al., 2017). 

In many cases machine learning models such as RFs 
have been used with success, as have algorithms 
such as Gaussian process, M5P and Random Tree 
(RT). In many research projects various model types 
were trained to identify which algorithm performed 
best according to the specific input datasets (Bui et al., 
2020).

Using collected quality sample datasets, advanced 
AI models permit the training of advanced data 
models to create accurate generalised cost functions, 
which in turn permit more accurate predictions for a 
specific assessment use case, such as the testing 
for a specific element in a water system (Mei and Liu, 
2019). When compared with the predictions of linear 
modelling, a significant reduction in the root-mean-
square error (RMSE) is often found, improving the 
classification of data samples.

The method of using the Raman spectrum to analyse 
the structure of water was described by Cross et al. 
(1937) and the Raman signal provided very detailed 
information. Since then, the use of optofluidic RS for 
water monitoring applications has continued to be 
a busy area of research. More recent studies have 
examined areas such as using high-power lasers for 
exciting the samples and increasing the collection 
efficiency of Raman scattered photons, improving the 
sensitivity of overall RS systems, as well as looking 
at the opportunities for creating portable RS devices 
(Persichetti and Bernini, 2016). 

Studies combining the use of optical data collected 
using RS and AI machine learning techniques such 
as deep learning and ensemble models such as 
RF to analyse blood samples are being published 
at an increasing rate (e.g. Lussier et al., 2020). 
The combination of this optical technique with 
machine learning methods such as RF or neural 
networks (NNs) has been used for the analysis 
of complex signals in human serum infected with 
Dengue virus (Khan et al., 2017a), for screening for 
hepatitis B-infected blood sera (Khan et al., 2019), 
for screening for asthma (Ullah et al., 2019) and with 
principal component analysis (PCA) for screening 
for nasopharyngeal cancer in human blood sera 
(Khan et al., 2017b). In a very interesting study, a 
combination of RS with an RF classifier was used 
to understand the molecular structure of milk from 
different species (Amjad et al., 2018). The study also 
leveraged dimensionality reduction and analysed the 
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variations in intensity in the Raman peaks of the milk 
samples with high precision. 

Arising from the above, it was concluded that 
leveraging proven ensemble AI/machine learning 
methods would work well with the high dimensionality 
produced by continuous Raman datasets. It was also 
concluded that the literature supports the feasibility 
of applying the method to the domain of water quality 
testing in the field, targeting specific analytes with 
good Raman signatures, as well as, possibly, to the 
detection of bacteria.

2.5	 Summary

There are a number of drivers for the development of 
innovative water quality monitoring platforms operating 

in real time or close to real time, such as the type 
reported here. RS offers a potential sensing method 
to achieve this objective, but in isolation it is not 
sufficient for in-field analysis. However, AI algorithms 
offer powerful tools for analysing large datasets, such 
as those produced using RS. The literature supports 
the hypothesis that a combination of RS and AI can 
be used to detect specific target analytes. This project 
resulted from the recognition of the potential utility of 
combining these technologies, and as a response to 
the clear benefits that would accrue from a continuous, 
real-time monitoring platform that does not require 
consumables/reagents to operate. In this respect, the 
project aimed to combine technologies that were not 
reflected in the existing portfolio of research projects.
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3	 Hardware Overview

3.1	 Raman Spectroscopy Overview

RS is a non-invasive, non-destructive, analytical 
technique that can provide molecular fingerprints of 
various substances present in water, without the use 
of consumable items or chemicals. The RS system 
is based on detecting the change in frequency of 
the incident monochromatic light interacting with 
the sample. The Raman instrument consists of a 
monochromatic source (laser), focusing objective and 
a spectrometer, as shown in Figure 3.1a. Bench-top 
Raman spectroscopes (see Figure 3.1b) are usually 
bulky and costly, and it is not possible to deploy them 
near water bodies for continuous monitoring of water 
quality. The main aim of the project was to seek to 
reduce the scale of the hardware, in other words to 
make progress towards a miniaturised version, for 
affordability and durability.

3.2	 Overview of the Hardware 
Development Strategy

To achieve the project’s primary objective, it was 
recognised that an iterative approach to developing the 
necessary hardware would be required. This approach 
envisaged a number of versions of the system to be 
developed, with insights and learning incorporated in 

successive stages, leading towards the LOC version. 
The versions envisaged were:

1.	 Laboratory version: to act as a basis for the 
project, establish baselines, enable verification of 
results, etc.

2.	 Car-boot version: to provide a means to conduct 
testing and rapid detection in the field, without 
deploying an instrument, e.g. onto a river;

3.	 Buoy version: to develop an instrument for 
autonomous operation and parameter detection 
when deployed in a river or other water body;

4.	 Lab-on-Chip (LOC) version: a reduced-scale 
sensing instrument capable of installation in either 
a Car-boot or Buoy platform.

This approach had the advantage that it allowed 
progress to be made on different aspects of the 
system in parallel. It also acted as a risk mitigation 
against the technical challenges of creating the LOC 
version, which was unlikely to generate reliable data or 
be robust enough for deployment at the early stages 
of the project. The idea was that the earlier versions 
would provide useful guidance for both of the eventual 
LOC detection systems in terms of data analysis.

Figure 3.1. Raman spectroscopy system. (a) Schematic and (b) bench-top system.
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In general terms, one of MTU’s main roles in the 
project was to create the hardware versions of the 
system. Within MTU, the CAPPA Research Centre 
focused on developing the sensing technology, 
i.e. RS, for the different versions. The Nimbus 
Research Centre was responsible for the design and 
integration of the sensing systems for the Car-boot 
and Buoy versions with the other functions that were 
necessary. These included power management, data 
management and data communications, for example, 
as well as the necessary firmware to operate the 

overall system. The LOC version was developed by 
CAPPA to an early stage; it was not deployed in the 
field as part of the project.

The next four chapters of this report describe the 
versions of the hardware that were developed through 
the project and the methods used to test and evaluate 
their performance in capturing accurate Raman 
spectra. Chapter 7 also describes the evaluation 
carried out on the original concepts for the LOC 
version, and the adaptation that was required, in the 
light of the insights obtained.
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4	 Hardware Version 1 – Laboratory-based Version

4.1	 Objectives 

The main objective of the laboratory (lab) version of 
the Raman spectrometer is to generate the Raman 
spectra of the pollutants in the water. The data 
generated are transferred to the software team to  
build the machine learning models being used 
throughout the project. This lab version acts as a 
precursor to both the portable Car-boot and Buoy 
versions of the Raman spectroscopes built during 
the project, and provides guidance to the subsequent 
systems on the best means of collecting and analysing 
the data. Table 4.1 summarises the principal elements 
of the four hardware versions developed as part of the 
project.

4.2	 System Description

The lab version of Raman set-up consists of a fibre 
probe, benchtop 350-mW laser Master Oscillator 
Power Amplifier (MOPA) laser from Innovative 
Photonic Solutions Ltd and a thermoelectrically (TE) 
cooled WP 785 spectrometer from Wasatch Photonics 
Ltd. Both laser and spectrometer run on alternating 
current (AC) power. Fibre-based probes provide optical 
filtering of the elastically scattered Rayleigh line and 
high-signal collection in a compact design. The Raman 
probe employed and the example spectra obtained 
are as shown in Figure 4.1. The Raman probe is 
fibre-coupled, and contains lenses, dichroic mirrors 
and various filters to excite the sample and collect the 
signal, as shown in the schematic of the Raman probe 
in Figure 4.2. The collected signal is directed into the 
spectrometer for analysis.

4.3	 Testing

The samples used were isopropyl alcohol (IPA) then 
freshly prepared solutions of nitrates in water using 
nitrate salts of various concentrations. The spectra 
acquired using the spectrometer software comprise a 
Raman signature of glass vial, nitrate, water peaks and 
cosmic ray spikes. However, the inherent weakness of 
the Raman effect, coupled with spectral variability due 
to spurious signals from sample holders, can produce 
significant problems for chemometric-based high-
throughput assays. To obtain a good SNR it is vital 
to avoid Raman peaks that are not of interest. After 
some experimentation, glass vials were replaced with 
aluminium sample holders, because the light does not 
penetrate the container glass, thus avoiding spurious 
background.

4.4	 Results

Using this lab version, spectral signatures of individual 
nutrients in powder form and diluted water were 
collected. The nutrients characterised were nitrates 
(NO3), nitrites (NO2), phosphates (PO4, HPO4, H2PO3) 
and sulfates (SO4), which give distinct single spectral 
peaks, unlike bacteria, which give complex, and 
generally weak, Raman spectra. It was found that 
the spectral signatures of these nutrients agreed well 
with the values in the literature. In later experiments, 
mixtures of the nutrients were examined.

The results obtained with the lab version spectroscope 
reduced the measurement time of the Raman 
spectra by 100 times compared with the bench-
top spectrometer tested (a PerkinElmer system), 
as illustrated by the Raman spectra of nitrates in 

Table 4.1. Comparison of four different versions of the project’s Raman system hardware

Version Laser Raman probe Spectrometer Power Purpose

Laboratory MOPA-350 mW Fibre probe Wasatch (5 V, 1.2 A) + (12 V, 0.8 A) E. coli detection and 
machine learning

Car-boot Ondax-600 mW Fibre probe Wasatch (5 V, 1.2 A) + (12 V, 0.8 A) Nitrate and other nutrients

Buoy Ondax-600 mW Fibre probe QE-Pro AC + 5 V, 
5 A + computer

AC + 5 V, 5 A + computer Nitrate and other nutrients

LOC TO can lasers Waveguides DIY 5 V, 0.25 A (estimated) E. coli and nutrients
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water in Figure 4.3. This significant improvement in 
measurement time is possible owing to the choice of 
the fibre-probe as the focusing objective. This probe 
allows the impinging light to directly interact with the 
water, unlike the bench-top spectrometers, in which 
light can interact only with water passing through 
sample holders. Owing to the improvements obtained 
with the lab version of the Raman spectroscope, it was 
possible to consistently detect nitrates at levels below 
50 mg/l (Figure 4.3).

To provide more realistic results that were more 
representative of real-world field testing, one unfiltered 
sample of water from the River Lee in Cork City was 
spiked with nitrates and phosphates, and analysed. 
The resulting spectrum is shown in Figure 4.4. The 
associated spectral peaks can clearly be identified 
against the background signal (mainly fluorescence) 
from other substances present in the sample.

The result shows that the laboratory system accurately 
captures and identifies Raman spectrum features, 
even in the presence of signals from multiple complex 
background compounds.

Figure 4.2. Schematic of a Raman probe with an 
aluminium sample holder.

Figure 4.1. Image of the Raman immersion probe and the Raman spectra of a nitrate sample. The Raman 
photons intensity on the y-axis is represented in arbitrary units (a.u.).
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Figure 4.3. Time consumption comparison between the bench-top and fibre-probe system for nitrates.

Figure 4.4. River Lee water sample spiked with nitrates and phosphates; Raman spectrum signatures for 
phosphate (left circle) and nitrate (right circle) are shown.
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5	 Hardware Version 2 – Car-boot Version

5.1	 Objectives

The objective of developing a transportable or Car-
boot version of the system was to be able to conduct 
convenient on-site testing of water contamination. 
This version was built such that it could be run on 12 V 
direct current (DC) if required. This meant that the 
main items of equipment would not be the same as the 
(large and power-hungry) laboratory-based equipment, 
e.g. the TE-cooled spectrometer and the AC-powered 
MOPA laser.

5.2	 System Description

Extensive testing of various spectrometers and lasers 
was undertaken to identify suitably accurate yet power-
efficient combinations of instruments for the Car-boot 
version. The spectrometers tested for the Car-boot 
version, i.e. the QE-Pro, Maya, Hamamatsu and 
Wasatch, are shown in Figure 5.1. It was concluded 
that the Wasatch spectrometer was an appropriate 
model, with superior performance and moderate power 
consumption. Similarly, the DC-compatible Ondax 
laser (see Figure 5.1) was chosen as the light source 
for the Car-boot version of the Raman spectroscope. 
The Ondax laser is hosted in a metal chassis for 
better thermal management and mechanical stability. 
Furthermore, a 12-V battery with charging circuit 
and power outlets to power both the laser and 
spectrometer was designed by the Nimbus team. 
Before assembling, a suitable housing was designed 
and 3-D printed for the Ondax laser. The components 

were fitted in a Peli case to withstand field conditions 
(Figure 5.2).

5.3	 Testing and Results

Figure 5.3 compares the performance of the Lab and 
Car-boot versions of the system and illustrates the 
Raman spectra of nitrate-spiked water samples. It is 
evident that an improvement of five times the Raman 
signal for the lower concentration of nitrates (50 mg/l) 
is achieved with the Car-boot version of the Raman 
spectrometer. This superior performance is possible 
owing to the combination of the high sensitivity of the 
Wasatch spectrometer and the large power of the 
Ondax laser (600 mW).

5.3.1	 Collaboration with the EU SWIM 
project team at UCD

Initial measurements were made using E. coli samples 
provided by the BioExplore group at MTU. These 
were laboratory samples in which the E. coli was 
diluted in de-ionised water. These samples provided 
background-free spectra (i.e. no interference from 
other substances) and so were not realistic tests 
of the system. It proved challenging to generate 
sufficient numbers of samples, and it was also difficult 
to undertake the microbiological analysis to define 
the number of colony-forming units (cfu)/100 ml 
required for training the machine learning algorithms. 
To validate the performance of the system with 
real-world samples, a collaboration was established 

Figure 5.1. Various spectrometers tested for the Car-boot version of the Raman system.
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with Professor Wim Meijer’s team at UCD (who 
are participants in the EU SWIM Project (EUSwim, 
2020).1 The EU SWIM Project team, supervised by Dr 
Laura Sala-Comorera, supplied four batches of water 
samples (15–20 individual samples in each case) 
that were collected from rivers and beaches in the 
Dublin area. The UCD team carried out microbiological 
analysis on each of the samples and provided the 
concentration of pathogens, e.g. E. coli, for each. In 
parallel, the samples were sent for chemical analysis 
by a commercial service provider [the Environmental 
Research Institute laboratory (ERI)] to determine the 
nitrate, sulfate and phosphate concentrations. Using 

1	 https://swimproject.eu/ (accessed 3 December 2020).

the Car-boot Raman system (Figure 5.4), the CAPPA 
team measured the Raman spectrum of each sample. 
The chemical and microbiological analysis provided 
the initial training data for the machine learning model 
(see below).

Batches 1 and 2 were used for system development 
and to develop the standard operating procedures 
(SOPs) for the analysis process. For example, 
samples must be refrigerated and tested within 
2 days of arrival to avoid degradation and minimise 
bacterial growth. The results from batches 3 and 4 
are shown in Figure 5.5. In particular, Figure 5.5a 

Figure 5.2. Components of the Car-boot system. (a) Wasatch spectrometer, (b) Raman probe, (c) Ondax 
laser, (d) battery and (e) Peli case.

Figure 5.3. Comparison of the performance between the lab and Car-boot versions of the Raman system.

https://swimproject.eu/
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Figure 5.4. Car-boot version of the Raman system.

Figure 5.5. Raman results from the EU SWIM Project samples. (a) Water sampled from different rivers and 
beaches in the Dublin area (batch 3). (b) Selected samples from batch 3, in which sulfates were detected. 
(c) Water sampled from different rivers in the Dublin area (batch 4). (d) Selected samples from batch 4 in 
which sulfates were detected.
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and b represents the Raman spectra from batch 3. 
The Raman system showed that the nitrate levels in 
all of these samples from the EU SWIM Project were 
below 50 mg/l, in agreement with the chemical analysis 
from ERI (Table 5.1). Although an encouraging result 
for the water quality of Dublin, this result was not 
a sufficient validation of the system. To compare 
the Car-boot Raman system results against the 
benchmark laboratory chemical analysis results 
for a compound that was present in meaningful 
levels, sulfate concentrations were then considered. 
Five samples from batch 3 present Raman peaks at 
around 981 cm–1, which corresponds to the presence 
of sulfates (see Figure 5.5b), and these results from 
the Raman system were confirmed by the chemical 
analysis from ERI, as shown in Table 5.1.

Similarly, Raman spectra of samples from batch 4 
are shown in Figure 5.5c. The Raman system 
predicted four samples with high concentrations of 
sulfates, as shown in Figure 5.5d. These predictions 
were validated by the results from ERI, as shown in 
Table 5.2.

It should be noted that while performing the Raman 
analysis for these samples from the EU SWIM Project, 
no processing of the water samples took place (e.g. 
filtering, screening). Therefore, various components 
in water created a background noise to the Raman 
measurement. Nonetheless, the system performed 
well and showed agreement with the results of the 
chemical analysis, and successfully detected the 
absence/presence of the targeted contaminants. The 
Raman spectra obtained from the EU SWIM Project 
samples were used to initial train and test the AI 
algorithms, following an 80/20 random split between 
training data and test data. However, it became 
apparent that the results were sensitive to system 
variables, i.e. integration time and the number of 
averages used. Therefore, although the EU SWIM 
Project data were very valuable, additional datasets 

Table 5.1. Concentration of sulfates and nitrates in 
the EU SWIM Project samples from batch 3

Sample ASU code Sulfate (mg/l) Nitrate (mg/l)

CC 3434-P1 51.68 1.530

CL 3434-P2 32.08 1.036

DMC 3434-P3 2622.31 0.069

DR1 3434-P4 78.92 0.835

EP1 3434-P5 101.88 2.810

EP3 3434-P6 61.76 2.183

GR1 3434-P7 49.22 2.369

GR2 3434-P8 48.30 2.418

LF 3434-P9 49.28 3.842

MC 3434-P10 2535.42 0.083

NT2 3434-P11 2166.77 0.130

RK1 3434-P12 86.81 2.618

RV1 3434-P13 38.47 0.831

SMC 3434-P14 2297.67 0.304

SY 3434-P15 85.19 2.594

TK 3434-P16 77.38 5.673

TS1 3434-P17 60.89 3.167

TS2 3434-P18 54.52 2.979

TS3 3434-P19 54.82 3.624

WWTP 3434-P20 1830.80 0.996

ASU, Aquatic Service Unit of ERI.

Table 5.2. Concentration of sulfates, nitrates and 
phosphates in the EU SWIM Project samples from 
batch 4

Sample ASU code Sulfate (mg/l)
Nitrate 
(mg/l)

Phosphate 
(mg/l)

CC 3500-P1 60.95 1.442 0.109

CL 3500-P2 21.43 0.292 0.011

DB 3500-P3 2632.58 0.070 0.005

DR 3500-P4 2632.63 0.064 0.007

EP1 3500-P5 51.27 0.962 0.056

EP2 3500-P6 58.29 2.009 0.072

EP3 3500-P7 30.15 < 0.010 0.149

GR1 3500-P8 51.98 2.232 0.118

GR2 3500-P9 49.41 2.086 0.130

LF1 3500-P10 48.06 2.136 0.025

MC 3500-P11 2444.70 0.062 0.018

ME 3500-P12 2502.65 0.056 0.005

PE 3500-P13 2525.06 0.061 0.020

PR 3500-P14 23.22 1.264 0.039

PR2 3500-P15 57.46 11.949 0.015

RK 3500-P16 69.13 2.971 0.071

RV 3500-P17 88.75 0.674 0.096

SMC 3500-P18 2391.92 0.061 0.045

SY1 3500-P19 73.13 1.746 0.081

TK1 3500-P20 85.22 1.641 0.029

TS1 3500-P21 33.34 2.376 0.093

TS2 3500-P22 26.28 1.236 0.058

TS3 3500-P23 23.97 0.629 0.187

Na2SO4 3500-P24 1007.86 NA NA

ASU, Aquatic Service Unit of ERI. NA, not applicable as this 
sample contains only Na2SO4 sent for calibration and it does 
not contain any nitrates or phosphates.
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were prepared by the project team, particularly for 
nitrates, and subsequently used for model training.

5.3.2	 Sample preparation for data analysis by 
machine learning

CAPPA provided the Hydrolight machine learning team 
with datasets for different salts dissolved in water, 
first to train the AI algorithm to identify nitrates and 
phosphates in water, and then to test the algorithm. 
The following salts were provided:

●● nitrates of varying concentrations from 10 mg/l to 
25 g/l, where the limit for nitrates is 50 mg/l as per 
the European drinking water quality directive (EU, 
1998) and S.I. No. 122 of 2014 (Government of 
Ireland, 2014)

●● sulfates from 25 g/l to 0.5 g/l;
●● phosphates from 25 g/l to 0.8 g/l;

●● mixture of sulfates and phosphates from 10 g/l to 
1 g/l;

●● mixture of nitrates and phosphates from 12.5 g/l to 
1 g/l;

●● datasets with water and no salts.

Stock solutions were prepared from these salts, to give 
known concentrations.

Sample Raman spectra for mixtures of phosphates 
and mixtures of sulfates and phosphates can be 
seen in Figure 5.6. In summary, a set of SOPs were 
developed that allowed the hardware and samples to 
be used consistently, to ensure that high-fidelity data 
were generated. Using these techniques, consistent 
Raman spectra were produced by the Car-boot 
version, appropriately labelled with the results from 
chemical and biological analysis; these were passed to 
the Hydrolight team to train and test the AI algorithms.

(a) (b)

Figure 5.6. Raman spectra of mixtures of (a) phosphates and (b) sulfates and phosphates.
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6	 Hardware Version 3 – Autonomous Buoy Version

6.1	 Objectives

The main objective of the Buoy version was to create 
a full end-to-end operational model incorporating all 
of the functionality of an autonomous water quality 
monitoring platform, using Raman spectroscopy and 
AI for parameter detection. This would allow the full 
end-to-end system to be demonstrated in the field. It 
was also envisaged that this version would form the 
basis for the operational LOC version, in terms of core 
functionality and design.

6.2	 System Description

6.2.1	 Overview

The primary technique used for water analysis in 
this project is RS, which generally involves using 
expensive laboratory-grade equipment, specifically 
a spectrometer combined with a Raman probe, a 
suitable laser, filters, etc. Ordinarily, such equipment 
is located in a laboratory. However, for this project a 
system was required that could operate autonomously, 
harvest data from the spectrometer and send the 
data wirelessly to the cloud for analysis, while 
managing power consumption and ensuring integrity 
of the data. Figure 6.1 shows a block diagram of the 
overall system needed to support the operation of the 
spectrometer.

The spectrometer used was a QE Pro from Ocean 
Optics, using a 5-V, 5-A supply; an Ondax Laser 

Module was used. Data from the spectrometer are 
normally acquired using Ocean Vie software, on a 
lab-based PC. As this was an embedded application, 
a microcontroller was needed to acquire the data 
from the spectrometer using serial communication. To 
switch the spectrometer on and off, appropriate power 
supply hardware was used to supply the necessary 
voltage and current. On-board data storage required 
an external memory, and wireless transmission of data 
was also needed. Table 6.1 lists the main components 
used.

6.2.2	 Printed circuit board design

A schematic of the system was drafted in Altium 
Designer and committed to printed circuit board 
(PCB) and manufactured by Eurocircuits (Figure 6.2). 
Assembly was done by hand in Nimbus (MTU).

6.2.3	 Other aspects

Cooling was achieved using four 12-V DC fans that 
blow air through pipes connected to the enclosure, 

Figure 6.1. Simplified block diagram of system. 
MCU, main control unit; PSU, power supply unit; 
RS232, recommended standard 232 data cable.

Table 6.1. Schedule of main components in the 
Buoy version

Component Description

Spectrometer Ocean Optics QE Pro scientific-grade with 
Hamamatsu S7031-1006S Detector and 
RS-232 interface

Laser Ondax Raman Butterfly laser module

Printed circuit 
board

Custom-designed by the project team, using 
a modular “plug-in” approach

Main control 
unit

ST Microelectronics Nucleo F401RE 
development board

Main control 
unit firmware

Developed with ST/Atollic True Studio 
Eclipse, coded in embedded C

RS232 
converter

Mikroe MAX232 board with a MAX232N 
drive/receiver IC

On-board data 
storage

Sparkfun SD card module using SDIO 
protocol

Spectrometer/
laser power 

Murata UEI15 series DC/DC converter

Wireless 
communications

Mikroe GSM4 click-board using UBLOX 
SARA-G350 2.5G GSM module

GSM, global system for mobile communication; SD, secure 
digital.
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and mounted under the buoy hull, acting as heat 
exchangers for the circulating air. The fans are 
switched using BC547 bipolar transistors controlled 
by the main control unit (MCU). Various mounting 
brackets were designed and fabricated using an 
Ultimaker 3-D printer. All components were housed in 
a sealed enclosure (Figure 6.3) and tested for end-to-
end operation. During testing, spectral data were sent 
to a post-testing server website for verification. The 
data consisted of 4176 bytes of spectral data; every 
4 bytes represented one pixel of the spectrum.

6.2.4	 Buoy integration

Once the end-to-end transfer of data was completed 
and the transfer communication system was 
debugged, the enclosure and system were installed 
in the buoy housing, developed by boat-building 
company Customworks.

Figure 6.4 shows the completed buoy with Perspex 
deck, and hinged lid and separate housing for the 
Raman probe.

Figure 6.5 shows the completely wired-up system 
installed in the buoy; on the left side of the picture the 
two 12-V batteries can be seen.

6.3	 Testing

6.3.1	 Testing strategy

Testing the system was carried out in a structured 
way to prove its functionality. The sequence of testing 
followed the order of the steps required for data 
collection, processing, transmission, verification and 
analysis; and included testing in both laboratory and 
field environments. The main stages were:

●● harvesting data from the spectrometer;
●● processing the data locally;

Figure 6.2. Two-dimensional image of PCB layout.

Figure 6.3. The top view of the system in the enclosure.
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●● sending the data to the generic cloud server;
●● data format verification;
●● Rinodrive2 server connectivity;
●● calibration testing;
●● laboratory end-to-end testing;
●● field deployment;
●● end-to-end functionality testing.

6.3.2	 Testing – the initial stages

●● Harvesting spectrometer data: 
–– extracting data using RS232 communication, 

via a custom firmware driver; and
–– ensuring that data are successfully captured.

2	 Rinodrive is the proprietary name of Hydrolight’s data management toolkit, which was used for the project.

●● Processing the data locally: 
–– customising firmware driver for data storage on 

an SD card; 
–– ensuring integrity of the stored data; and 
–– locally converting the data into the correct 

format for sending to the cloud.
●● Sending data to the cloud (generic server): 

–– creating a firmware driver for the cellular 
modem; and 

–– during functional testing, sending the spectral 
data to a post-testing server website.

●● Data format verification: 
–– ensuring that the correct number of data were 

received, at the server end, and in the correct 
order.

●● Rinodrive connectivity: 
–– creating a communication bridge between the 

buoy and the Rinolab server; and 
–– sending randomised data to the Rinodrive 

platform to test connectivity.

6.3.3	 Raman spectroscopy calibration testing 
(original equipment manufacturer 
software versus the Watermon system 
software)

Controlled calibration tests were conducted in the lab 
using a control solution of IPA with a defined Raman 
spectrum signature. In this way, the characteristics 
of the data sent to the cloud could be checked for 

Figure 6.4. Buoy-side view.

Figure 6.5. Enclosure mounted in the buoy.
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correct reading of the Raman probe, data capture, 
transmission and display. Figure 6.6 shows the probe 
removed from the buoy sitting in a vial of IPA control 
sample.

A side-by-side test using a control IPA sample was 
conducted using the spectrometer controlled using 
either a laptop and the software (OceanView) provided 
by the original equipment manufacturer (OEM) or the 
buoy system. The results are shown in Figures 6.7 and 
6.8 and the graphed data were confirmed by CAPPA 
team members to display the correct Raman signature 
of IPA. This confirmed that the RS system in the buoy 
was reading correctly.

6.3.4	 Laboratory Raman spectroscopy 
functionality testing (using nitrates as a 
case study)

A range of laboratory-prepared samples with 
defined levels of nitrates were tested, using different 
spectrometer integration times and read-averaging 
numbers. These were compared with the spectrograph 
obtained using the manufacturer’s OceanView 
software. The set of data generated for this aspect of 
the project comprised 72 spectra. See section 6.4 for a 
discussion of the results.

6.3.5	 Field deployment end-to-end 
functionality testing

The buoy was deployed for field trials of the full 
end-to-end system, including using AI to detect target 
analytes. Chapter 9 describes the findings.

6.4	 Results of the Raman 
Spectroscopy System Testing

6.4.1	 Water sample testing

Figures 6.9 and 6.10 show the results of a water 
sample containing a high concentration of nitrates 
(5 g/l) obtained using the OEM software and the buoy 
system, respectively. This high concentration was used 

Figure 6.6. Raman probe immersed in IPA solution.

Figure 6.7. OEM software IPA spectrograph.
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Figure 6.8. Buoy system IPA spectrograph; result graphed on the Rinodrive platform.

Figure 6.9. Sample nitrate concentration (5 g/l) determined using the OEM software.
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Figure 6.10. Sample nitrate concentration (5 g/l) determined using the buoy system.
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to clearly illustrate the nitrate peak at c. 1043 cm–1. The 
buoy system accurately detected both the profile of 
the water sample and the spike of nitrate contaminant. 
All test results shown below were conducted using 
a spectrometer integration time of 10 seconds and 
50 averages.

By contrast, Figure 6.11 shows a barely visible 
nitrate signature for 40 mg/l nitrates at 1043 cm–1. 
At this concentration, the spectrum peak is almost 
imperceptible on a graphical plot; traditional analysis 
of a single spectrum such as this, in isolation, may be 
inadequate for detection.

Results from testing potable water using the same 
spectrometer configuration are shown in Figure 6.12, 
to illustrate the lack of obvious differences in Raman 

spectra between the samples when concentrations of 
nitrates are low (Figure 6.11 vs. Figure 6.12).

6.5	 Conclusion

The Buoy version was comprehensively tested for 
end-to-end functionality, in terms of capture of Raman 
spectra, data management and transmission to the 
cloud-based platform. The system is fully operational 
and functioning correctly; it reproduces calibrated 
(OEM) spectra correctly. Chapter 8 describes the 
data processing workflow from when the data arrive 
in the cloud. The graphs of the spectra for low nitrate 
concentrations illustrate the reasons for using AI 
to facilitate detection at such concentrations – see 
Chapter 8 for further details.
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Figure 6.11. Spectrum for samples containing 40 mg/l nitrate.
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Figure 6.12. Raman profile of water.
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7	 Hardware Version 4 – Lab-on-Chip Version

7.1	 Objectives

The objective of the LOC version is to decrease size 
and cost, and improve the large-scale manufacturing 
potential of the Watermon for water quality monitoring. 
Under the present project, the MTU–CAPPA team has 
advanced the LOC version in a succession of steps.

Early-stage work examined specific details of the 
envisaged LOC. Through that work, it became clear 
that the optofluidics element presented challenges 
regarding aspects such as biofouling/clogging and 
the “optical tweezers” (for bacteria concentration). 
Therefore, the proposed channel configuration 
was altered to avoid fluid confinement. For the 
tweezing, a dielectrophoresis trapping technique from 
collaborators at the University of Jena was sourced. 
This modified approach was presented to the project 
steering committee for discussion and feedback, after 
which development of the LOC version proceeded. 
In parallel (as described above), the Car-boot and 
Buoy versions also advanced, to provide meaningful 
data for the project in the short term. These versions 
were developed to a higher TRL and had the ability 
to provide results to the AI portion of the team, in the 
required timeframe.

7.2	 System Development and Testing

7.2.1	 Lab-on-Chip schematic

In high-level terms, any LOC version must have:

1.	 a laser light source;

2.	 a method to position/concentrate the target 
sample;

3.	 a method to conduct the laser light onto the 
sample; and

4.	 a spectrometer to capture the Raman spectra 
induced within the sample.

The most challenging aspects for the project were 
items (2) and (3), and it was in these areas that 
most attention was concentrated during the system 
development. Work was also carried out to develop a 
new spectrometer, item 4, as described in section 7.3. 

The lasers used in the process were available “off 
the shelf” in all cases. A schematic of the initial LOC 
design is shown in Figure 7.1.

A number of other factors affect the performance 
of LOC-type Raman systems, as demonstrated by 
the project team during the project. These include 
the material used as the chip substrate, the nature 
and orientation of light-conducting fibres, the use of 
surface enhancements, the ability to concentrate and 
accurately target a suitable sample with laser light, the 
level of signal interference/noise generated by material 
defects in the system, etc. The following sections 
describe the iterative process of development and 
testing that was undertaken for the LOC version, and 
illustrate the progress made.

7.2.2	 Alternatives to the optofluidics glass 
chip concept

Alternatives were explored for the material of the chip, 
the layout and fabrication method for the laser light-
channelling system, and the sample handling method 
within the LOC. Alternative candidate materials 
included polymer resin, SU8 (a commonly used 

Figure 7.1. Schematic of the LOC design with 
grooves to hold the fibres.
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epoxy-based negative photoresist) and aluminium. 
The alternative sample handling pursued was surface 
placement on the chip. The physical arrangement 
of the waveguides was reviewed. Finally, it was 
recognised that considerations such as anti-fouling 
would depend on the outcome of these investigations. 
Given the change in approach, the open configuration 
(avoiding microchannels for fluids) greatly mitigates 
many issues. The open channel configuration offers 
advantages with respect to microfluidic channels when 
it comes to biofouling. Mechanical cleaning is a viable 
solution in the open configuration (and with the probe), 
whereas in the channel very complicated techniques 
would have been required. It should be noted that in 
the open (and probe) configuration there is no need to 
bring samples into the unit.

7.2.3	 Open channel fibre-grooves

A chip with open channels to hold optical fibres was 
fabricated using a high-quality stereolithography-based 

3-D printer using polymer resin. The CAD design 
and the 3-D printed device of the LOC are shown in 
Figure 7.2a and b, respectively. This LOC platform 
consists of grooves that hold excitation and collection 
fibres, positioned orthogonal to each other, connected 
to the LOC laser and spectrometer. IPA droplets were 
placed in the sample slot and covered with a calcium 
fluoride (CaF2) slide to avoid evaporation. The IPA 
Raman spectrum from using this LOC is shown in 
Figure 7.2c. This corresponds well with the results 
from the full-scale laboratory equipment.

7.2.4	 Closed channel fibre grooves

To improve the performance, in an improved design 
closed channels were used to hold the fibres more 
securely, minimising the use of adhesives, as shown in 
Figure 7.3a and b. This closed-channel-based system 
gives better Raman signals (Figure 7.3c) than the 
open-channel LOC.

Figure 7.2. LOC Raman system with grooves to hold the fibres. (a) CAD design, (b) 3-D printed chip with 
a stereolithography apparatus (SLA) 3-D printer using resin and (c) Raman spectra of IPA using the resin 
LOC.

Figure 7.3. LOC Raman system with closed fibre holders. (a) CAD layout, (b) 3-D printed LOC using resin 
and (c) Raman spectra of IPA using the device.
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7.2.5	 Closed-channel optimisation

To further improve the performance of the closed-
channel Raman LOC, different arrangements of the 
light-conducting fibres close to the sample chamber 
were tested, using IPA as a test sample. The results 
are presented in Figure 7.4, which demonstrates that, 
of the three arrangements tested, the best option is 
that shown in Figure 7.4b, because it provides the 
sharpest spectrum; in the configuration in Figure 7.4a, 
diffraction reduces the amount of Raman scattered 
light collected, whereas in the configuration in 
Figure 7.4c, the collection fibre may collect some of 
the pump light, increasing the background signal.

7.2.6	 SU8-based designs

The 3-D printed LOCs described in section 7.2.5 
provided insights for improving the LOC design and 
rapidly testing ideas. However, to bring this technology 
to market, the MTU–CAPPA team has been employing 
designs more suited to mass manufacturing, namely 
photolithography-based techniques. For this purpose, 
a set of SU8-based LOC designs were fabricated and 
tested at MTU and Tyndall National Institute, Cork, 
using their semiconductor device manufacturing tools, 
which are capable of low-volume mass production (for 
example, Figure 7.5). These devices continue to be 
evaluated at CAPPA in ongoing work.

Figure 7.4. Optimisation of fibre positions in the 3-D printed LOC platform. (a–c) The LOC of Raman 
systems with various configurations of fibres. (d–f) The corresponding baseline-corrected Raman 
spectra of IPA at 1000 ms, 5 read-averages, 415 mW, maximum laser power.

Figure 7.5. SU8-based LOC device. (a) Layout, (b) fabricated device and (c) characterisation of the device.
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7.2.7	 Surface-enhanced Raman scattering-
improved systems

SERS effects can improve the performance of RS. 
To explore this option, a groove-based LOC design 
was 3-D printed on aluminium substrate (Figure 7.6a). 
The experimental results demonstrated an increase in 
spectrum intensity but at the same time an undesirable 
increase in fluorescence, as shown in Figure 7.6b. 
To overcome this problem, MTU–CAPPA is also 
evaluating the computer numerical control (CNC) 
machining of the LOC system (Figure 7.6c) as a 
further alternative.

7.2.8	 Dielectrophoresis

To further improve the detection limits of the LOC 
version, particularly for E. coli, the MTU–CAPPA team 
established a collaboration with the University of Jena 

in Germany, which has developed technology based 
on dielectrophoresis (DEP), which enables E. coli to 
be concentrated in a small region of a chip-based 
detection system, thus enhancing the Raman signals 
(Cheng et al., 2007). The system is illustrated in 
Figure 7.7. DEP allows the spatial manipulation of 
particles through the interaction of the sample with a 
non-uniform electric field. The technique offered an 
interesting avenue of investigation for the present 
project, since it allows the spatial manipulation of cells 
and bacteria, without the need for biochemical labels 
or other bioengineered tags. Figure 7.7 shows E. coli 
under an electric field, with an applied voltage of 4 V 
peak to peak. Visualisation is achieved through a  
40× objective microscope. Figure 7.8 shows the 
Raman spectra obtained from the E. coli strain Nissle 
using the DEP with the Horiba Xplora Raman system 
at CAPPA.

Figure 7.6. Alternative fabrication methods tested. (a) 3-D metal printed LOC platform on aluminium, 
(b) Raman spectra of IPA using an aluminium LOC and (c) CNC-based LOC device.

 

Figure 7.7. Dielectrophoresis Jena University chip, measuring E. coli.
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The DEP chips from Jena were tested with E. coli 
Nissle and CAPPA’s benchtop microscopy Raman 
system (Horiba Xplora), with an immersion objective 
20×, and excitation wavelength of 532 nm. The 
concentration of E. coli was 2.4 × 108 cells/ml. The 
resulting Raman spectrum (Figure 7.8b) displays 
potential for DEP to be used as a basis for a fully 
operational LOC E. coli detection system, having 
some similarities to E. coli Raman spectra found in the 
literature (Figure 7.8c) (Cheng et al., 2007). It proved 
difficult to combine the DEP chip with Raman probe-
based systems owing to probe alignment issues. 
However, the DEP electrodes are fully compatible 
with the processes required to fabricate the SU8 
waveguides. A more promising avenue of development 
appears to be to integrate photo-lithographically 
realised polymer (SU8) waveguides on top of DEP 
chips. These polymer waveguides can efficiently 
collect the Raman signal from concentrated bacteria, 
and it is planned that the system envisaged will form 
part of further work for the project team (Cheng et al., 
2007).

7.3	 Customised Spectrometer for the 
Lab-on-Chip Raman System

One challenge to produce a low-cost, compact RS 
system is the high cost of the spectrometer. Hence, 
the project team took early-TRL steps to develop 
a low-cost spectrometer. This involves hardware 
development and software models, collection optics, 
light power sources, etc. A compact opto-mechanical 
module with customised wavenumber region and 
acceptable resolution and SNR was assembled.

Figure 7.9 shows the assembly of the diffraction 
grating, the image sensor consisting of a PCB 
soldered in a 3-D housing. This custom spectrometer 
was calibrated using three light-emitting diodes 
(LEDs), 405 nm, 650 nm and white LED, allowing each 
element of the charge-coupled device (CCD) array to 
be assigned an appropriate wavelength. The spectra 

Figure 7.8. Results of testing DEP with E. coli Nissle. (a) DEP with concentration of E. coli Nissle in the 
middle of the chip, (b) Raman spectrum of E. coli and (c) Raman spectrum of E. coli using spectral data 
from Cheng et al. (2007).

Figure 7.9. Diffraction grating and spectroscope 
assembled in 3-D printed casing for the custom 
spectrometer.
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from these LEDs is shown in Figure 7.10. The 
CAPPA team continues to develop this miniaturised 
spectrometer, with the goal of combining it with the 
LOC version Raman and the DEP chips to realise a 
high-performance low-cost sensing platform.

7.4	 Summary

A series of different compact RS systems were 
developed during the project. By virtue of its 
robustness and maturity, the Car-boot version was 
used for deployment on the buoy and to generate 
the data required for machine learning analysis. 
As the machine learning would require re-training 
if the hardware was altered, the Car-boot version 
was frozen once a satisfactory level of performance 
was reached, so that consistent datasets were 
generated. Considerable know-how was developed 
on how to use the Raman system, e.g. on the use of 
aluminium sample holders and appropriate analysis 
techniques, such as background subtraction. Such 
analysis techniques are key to successful RS, 
and this process took longer than expected. Once 
development of the Car-boot version was complete, 
efforts shifted to the LOC versions, which successfully 

3	� “Deterministic” analysis refers to the traditional analysis, which, for example, calculates the area under a peak, the peak maximum 
and other numerical analysis techniques. These techniques analyse only a single spectrum at a time.

demonstrated nutrient detection. E. coli concentration 
was successfully demonstrated using DEP. The 
strategy selected was chosen for the compatibility of 
the SU8 waveguides and DEP, although the project 
ended before they could be combined into a full 
LOC version. Figure 7.11 shows a schematic for this 
system, which represents the ultimate form that the 
LOC Raman system will take, and which will continue 
to be developed.

It proved very difficult to reliably detect E. coli using 
traditional, deterministic analysis,3 i.e. by analysis 
of peaks in the spectra, including using techniques 
such as background subtraction and others. This 
is because of the weakness of E. coli as a Raman 
scatterer and the complexity of the spectrum. In other 
words, E. coli produces a large number of weak peaks, 
whereas nitrate produces a single peak. Machine 
learning techniques developed by the project team 
proved more successful than deterministic analysis, as 
discussed in the next chapter.

Figure 7.10. Calibration of the custom 
spectrometer.

Figure 7.11. Plan view of the proposed LOC/DEP 
combination. The SU8 waveguides are shown in 
green and the electrodes in grey. The waveguides 
can be fabricated after electrode deposition.
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8	 Artificial Intelligence Software and Platform

8.1	 Artificial Intelligence/Machine 
Learning Approach

8.1.1	 Overview

The state-of-the-art review indicated that proven 
ensemble class machine learning methods would 
work well with the high dimensionality produced by 
continuous Raman datasets. The focus for this project 
was the use of RF and boosting (XGBoost) classifiers 
(Zhang and Ma, 2012).

8.1.2	 Technology stack key components

The technology stack has a number of key 
components (Figure 8.1):

●● cloud infrastructure for the high availability and low 
cost of AI computations; 

●● the latest micro-frameworks for Python; and 
●● well-established machine learning libraries in 

Scikit-learn. 

Web services were used as integration points between 
the buoy hardware and the AI Core web platform. 
Plotly graphs were used for signal visualisation and 
Bootstrap was used to create a standardised mobile-
friendly front-end dashboard. For data storage, the 
secure Rinodrive platform was used with MySQL 
Database.

8.1.3	 Details of components

Cloud availability

RS data are stored securely on cloud storage selected 
for high availability, where they can be wrangled 
and processed using the required processing power 
ready for input to the AI model library for classification 
(Kandel et al., 2011).

Artificial intelligence core platform

This is a web-based services application for data 
handling, error logging and hosting the trained AI 
models for parameter detection, a lean, fast micro-
framework type of application. This is the functional 
heart of the AI platform.

Signal interpolation function

The received data file is processed through an 
interpolation function developed in line with the Raman 
spectroscope technical guidelines.

Artificial intelligence library

This contains the Watermon pre-trained AI models, 
which process incoming Raman data sequentially 
and store the results in the database. The library is 
extendable with additional models.Figure 8.1. Component diagram for the AI 

Watermon cloud.
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8.2	 Data Processing Workflow

The workflow for processing data from the 
autonomous buoy platform is shown in Figure 8.2.

8.2.1	 Watermon buoy

The buoy sends data from RS analysis over a cellular 
connection to the cloud-based water monitoring 
platform. The data are sent as a dark.txt (background 
noise) file and a water.txt file containing the actual 
water sample.

8.2.2	 Web service

The platform receives the data over an HTTP 
message. This file is processed through a web service 
on the cloud platform.

8.2.3	 Sample file identification

On arrival at the web service the file type is checked 
to determine whether it is the file for a dark sample or 
an actual water sample. If it is file for the dark sample, 
it is stored in the database for pairing with its matching 
water sample file. When the water sample file is 
received, the dark.txt file is used in the background 
noise reduction stage.

8.2.4	 Sample file storage

Both dark and water sample files are retained in the 
application database for use during analysis. The 

database has two distinct database tables for storing 
of the samples, as shown in Figure 8.3.

8.2.5	 Removing background noise

Each data point of the dark sample (laser off) is 
subtracted from the equivalent water sample (laser 
on) (Figure 8.4). The rationale for this procedure 
is described in the OceanView Guide (OceanView, 
2013). In summary, a sample-specific background 
spectrum is captured and used to eliminate 
undesirable effects, including ambient light, other 

Figure 8.2. The data processing workflow.

Figure 8.3. Watermon database table schemas for 
dark and water samples.
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light sources, thermal noise, etc., all of which can 
compromise the usefulness of the data.

8.2.6	 Normalising data

Because the range of intensity values can vary 
significantly between samples, each sample must 
be normalised. This is the case for both the samples 
used to train the model and the samples sent from 
the buoy for testing. The normalisation used was 
min-max feature scaling. Each normalised data point is 
calculated as follows:

X' = Xmax – Xmin

X – Xmin � (8.1)

where X is the original data point and Xmax and Xmin are 
the highest and lowest intensity values, respectively, 
which occur below 500 cm–1. The nitrate and E. coli 
datasets used to train the models are shown in 
Figures 8.5 and 8.6.

8.2.7	 Feature scaling

From the Scikit-learn description of the StandardScaler 
function: “Standardisation of a dataset is a common 

requirement for many machine learning estimators…” 
(Pedregosa et al., 2011; Scikit-learn, 2020).

For each feature of a dataset (each wavenumber in 
this case), a standard score, Z, is calculated:

Z = σ
X – µ

� (8.2)

where X is the value of each datapoint for that feature, 
while μ and σ are the mean and standard deviation of 
all data points in the dataset for that feature. These 
standard scores are used as final values of the dataset 
used to train the AI model. The standard scores 
for each feature in a signal coming from the buoy 
must be calculated using the same μ and σ from the 
training dataset. Scikit-learn’s StandardScaler function 
simplifies this process.

8.2.8	 Analysing with artifical intelligence 
models

At the training and testing stage, in addition to 
the normalised and feature-scaled RS data, each 
sample used to create the dataset must also have 
an associated label that gives the value of the 

Figure 8.4. Background spectrum subtraction.
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Figure 8.5. Nitrate training dataset before and after the normalisation stage.
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parameter that the new AI model is to detect, e.g. 
nitrate concentration. With a completed AI model, i.e. 
one that has been trained and tested successfully, the 
normalised and feature-scaled RS data are passed 
through the trained model. The result is a yes/no flag 
that shows the presence of the target analyte above its 
detection threshold. A single Raman spectrum can be 
passed through multiple AI models, each trained for a 
specific parameter, to check for multiple parameters.

8.2.9	 Watermon dashboard and alerts

Finally, the results of the analysis are transmitted to 
the Watermon Dashboard, a prototype web-based 
water-monitoring dashboard that uses a mobile-
friendly framework. This dashboard provides an 
interface for the Watermon team to review real-time 
test results or to send alerts. Incoming data, i.e. 
Raman spectra, are graphed in real time to allow them 
to be visualised; and stored in data array format for 
further processing. Alerts can be sent via email or SMS 
text, on detection of the target parameters. The total 
time taken for the overall data flow process varies, 
mainly depending on the settings for the spectroscopy; 
longer integration time and higher number of averages 
lead to a longer time being taken to capture the RS 

spectra. The trade-off is that higher sensitivity is 
achieved. Once the spectra have been captured, the 
other data-processing steps generally all take place 
within less than 5 minutes.

8.3	 Artifical Intelligence Model 
Development

8.3.1	 Overview

The workflow for AI development is illustrated in 
Figure 8.7; model validation is a key step. The models 
are developed through the tuning of the algorithms’ 
hyperparameter settings, and model training and 
testing. Raman spectrum data were uploaded 
to Rinodrive by the CAPPA team, as one file per 
spectrum. These Raman spectrum data files were 
‘wrangled’ into a training dataset, randomly split 80% 
for training and 20% to test model accuracy.

8.3.2	 Artificial intelligence model basis – 
Scikit-learn library

A range of open source AI model libraries are 
available for use by researchers. In this project, the 

Figure 8.6. E. coli training dataset after normalisation stage.
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basis for the AI models was the Scikit-learn suite, 
an open source software machine learning library 
for the Python programming language. This library 
has been used in many research studies (Abraham 
et al., 2014; Richter and Khoshgoftaar, 2019; Kumar 
et al., 2020). The data structure from RS is suited to 
two classes of model, namely ensemble models and 
NNs. Models from both of these classes were applied 
to the datasets and gave results of similar accuracy; 
however, NN models were slower to run (and so 
more expensive in computing time) than ensemble 
models. Therefore, the project team focused on using 
ensemble models.

8.3.3	 Hyperparameter tuning

For the models used in this project, hyperparameters 
are passed as arguments to the constructor of the 
estimator classes. It is possible, and recommended, 
to search the hyperparameter space for the best 
cross-validation score. Any parameter provided when 
constructing an estimator may be optimised in this 
manner; specifically, to find the names and current 
values for all parameters for a given estimator. In 
this case GridSearchCV was the method to identify 
optimised hyperparameters.

8.4	 Final Artificial Intelligence 
Model – Nitrates

8.4.1	 Nitrates Random Forest model

For nitrates, an RF classifier provided the highest 
accuracy scores. The specific model used from the 
Scikit-learn library was RandomForestClassifier 
(Lateef, 2019). RF is a learning method that operates 
by constructing a large number of decision trees that 
operate as an ensemble. Each branch of the tree 
represents a possible decision, occurrence or reaction. 
Each individual tree generates a class prediction and 
the class with the most votes becomes the AI model’s 
prediction (see Figure 8.8).

8.4.2	 Preprocessing data

To train and test the nitrate model, the water spectra 
data were shuffled using the shuffle method in Scikit-
learn (sklearn.utils.shuffle) and then split using the 
train–test–split method. The nitrates detection AI 
model is trained with 36 samples from the identical 
hardware deployed in the buoy. It became apparent 
during the project that calibrating/training the model 
based on the same hardware and system variables – 
integration time and number of reading averages – that 

Figure 8.7. AI model training workflow diagram.
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will be deployed in the field is key to getting good 
results from the AI models. The training set contains 
12 water samples and 24 nitrate samples of varying 
concentrations. The accuracy score calculated through 
the Scikit-learn accuracy function is 99.8%.

8.4.3	 Setting parameters

The GridSearchCV process was used to establish the 
optimised hyperparameters:

RandomForestClassifier(max_depth = 6, 
max_features = ‘auto’, 
n_estimators=n_e, 
criterion=‘gini’, 

random_state=2, 
class_weight=‘balanced’)

The n_estimators parameter is important in the 
RF classifier; it represents the number of “trees in 
the forest”. In this case ‘n_estimators’ was set to 
130 decision trees, this being the number of trees 
required to arrive at the optimal prediction score (see 
Figure 8.9).

8.4.4	 Feature importance

During training, an AI model typically isolates key 
features of interest and assigns relative importance 
values to them. In the case of RS, this translates into a 

Figure 8.8. Graphical illustration of the Random Forest classifier method.

Figure 8.9. Graph of results optimising the n_estimator parameters.
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shortlist of key wavenumbers that the model finds are 
significant in determining the presence or absence of 
the parameter in question.

8.4.5	 Nitrate concentration 100 mg/litre

Figure 8.10 shows a nitrate spectrum from a 
concentration level of 100 mg/l using the buoy 
equipment. Overlaid on the graph are dots at the 

feature points that the model identified; the size of the 
marker shows how influential the feature is in deciding 
whether or not nitrate is present. Feature 1 is the 
primary feature, and features 2 and 7 are also located 
in the same area of the spectrum. This corresponds 
well with the known Raman wavenumbers for nitrate, 
c. 1037–1043 cm–1. When we zoom in on this area of 
the spectrum, the expected spike is readily apparent 
(see Figure 8.11).

Figure 8.10. RS nitrate spectrum with AI features overlaid (concentration 100 mg/l).

Figure 8.11. Magnified portion of RS nitrate spectrum from Figure 8.10 showing the primary feature, 
feature 1, of the AI model, c. wavenumber 1040 cm–1 (concentration 100 mg/l).
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8.4.6	 Nitrate concentration 80 mg/l

Figure 8.12 shows the RS spectrum from a nitrate 
concentration of 80 mg/l; the difference from water 
without nitrates is less distinct on visual inspection – 
see Figure 8.13. The AI model identifies samples 
of this concentration as a nitrate. A distinct small 
peak at wavenumber 1040 cm–1 on the spectrum 
can still be seen, made clearer by zooming in (see 
Figure 8.14).

8.4.7	 Nitrate concentration 30 mg/l

At levels of 30 mg/l and below the nitrates are not 
identifiable visually, even when the spectrum is 

examined more closely (see Figures 8.15 and 8.16). 
However, the generalised function created within the AI 
model uses the full set of features together to analyse 
the spectrum, and flags a positive nitrate result.

8.4.8	 Validating models

It is common practice when performing a (supervised) 
machine learning experiment to retain some of the 
available data (20% in this case) as a test dataset, 
X_test, Y_test, to evaluate the algorithm’s accuracy. 
Figure 8.17 shows a flow chart of a typical cross-
validation workflow in model training.

Figure 8.12. Full RS nitrate spectrum (concentration 80 mg/l).
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Figure 8.13. Raman profile of water.
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The cross_val_score function was used to calculate 
the cross-validation scores. This indicated 99.8% 
accuracy of nitrate detection using the model.

8.4.9	 Model deployment

Finally, the trained model was saved (pickled) to file 
for use on the AI Core web platform, and, therefore, 
became available for the analysis of incoming real-time 
data, from either laboratory or field RS readings.

8.5	 Final Artificial Intelligence 
Model – Escherichia coli XGBoost 
Artificial Intelligence Model

E. coli was a more difficult parameter to detect using 
the equipment and there are health risks associated 
with testing E. coli samples, which imposed limitations 
on the type of testing that could be carried out. The 
AI model for E. coli is based on a boost classifier 
that performed best in testing, specifically the 

Figure 8.14. Magnified portion of the RS nitrate spectrum from Figure 8.12 zooming in on the 
wavenumber 1040 cm–1 area (concentration 80 mg/l).

Figure 8.15. Full RS nitrate spectrum (concentration 30 mg/l).
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XGBClassifier from XGBoost in the Scikit-learn 
library. In terms of bacteria detection, the project 
focused on investigating E. coli. This aspect proved 
challenging for practical reasons – safety of laboratory 
personnel, sample preparation and handling, 
limitations on storage capacity, etc. – and, therefore, 
other pathogens such as enterococci could not be 
investigated.

8.5.1	 Boosting models

Boosting is an ensemble learning technique that uses 
machine learning algorithms to convert weak learners 
to strong learners, to improve the model. Ensembling 
is a process that reduces error in AI models. A number 

of boosting methods, and different ensembling 
methods, are available. XGBoost is an implementation 
of a gradient-boosting decision tree algorithm that 
uses parallel ensembling. It performed best in testing 
and was selected for this project. Details of XGBoost 
are available online (Lateef, 2019; Morde, 2019).

8.5.2	 XGBoost parameters

For the E. coli AI XGBClassifier model, the relevant 
parameters were set as shown in Figure 8.18.

8.5.3	 Model training and feature importance

The model was developed using a training dataset 
consisting of Raman spectra taken from 61 samples 
from the different batches supplied by Professor Wim 
Meijer’s team under the EU SWIM Project at UCD as 
described in section 5.3.1. Biological analyses were 
carried out at UCD to determine E. coli concentrations. 
The training dataset was made up of 48 samples of the 
61. The validation dataset consisted of the remaining 
13 samples. The model was assessed for a range of 
sensitivity levels, to assess its effectiveness at different 
E. coli concentrations. For each training level, e.g. 
250 cfu, the RS spectrum of each sample was labelled 
as positive or negative, based on the cfu count being 
above or below that level. The model was then trained 
and tested on the labelled data.

Figure 8.16. Magnified portion of the RS nitrate spectrum from Figure 8.15 zooming in on the 
wavenumber 1040 cm–1 area (concentration 30 mg/l).

Figure 8.17. Flow chart of typical AI model cross-
validation workflow.
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As for the nitrate model, during the training process the 
AI algorithm for E. coli extracted the most significant 
features of the spectrum for E. coli detection. The 
feature importance graph in Figure 8.19 shows the 
important Raman spectrum features in classifying 
samples as identified by the boosting method used.

8.5.4	 Model results and deployment

This accuracy score was calculated using the Scikit-
learn accuracy_score method. The accuracy score of 
the XGBClassifer model for E. coli was calculated as 
83.4%. This was based on the available E. coli training 
dataset as described above, and for a detection limit of 

250 cfu. It is expected that the accuracy of the method 
will improve as further datasets are used to train and 
validate the model. Finally, the trained model was 
saved (pickled) for use on the AI Core platform and, 
therefore, it became available for analysis of incoming 
real-time data, from either laboratory or field RS 
readings.

8.6	 Calibrating Artificial Intelligence 
Models for Deployment – 
Equipment Types and Settings

The above models were trained with data from the 
specific RS units, as set out in Chapter 6. To ensure 

Figure 8.18. XGBoostClassifier model parameters.

Figure 8.19. Escherichia coli model feature importance results.
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the accuracy of the validated models, it became clear 
that the training dataset for model training should 
be data collected from the same RS equipment 
with the identical settings, to reduce false positives 
or negatives caused by the equipment or setting 
variations. Any changes in equipment types or settings 
may require a recalibration of the AI models, by 
training the models with an updated dataset from the 
new equipment choices.

8.7	 Data Storage Platform –  
Rinolab.com

All data for the project are stored on a dedicated 
secure data server, in this instance from Rinolab, and 
not on a mass-market consumer-grade general data 
platform. This allows science teams to collaborate 
securely and safely across different geographical 
locations. Team members are notified when new 
datasets are added to the data repositories or when 
any activity takes place on the files. A complete 
audit trail or activity feed is visible to team members, 
ensuring data integrity across the project. Water 
sample data were uploaded to the platform for 
inclusion in the machine learning models as required. 

See Figure 8.20 for a view of the Rinolab secure data 
server file structure, accessible at https://app.rinolab.
com/cit, subject to user authorisation.

8.8	 User Interface

The water monitoring dashboard is delivered to users 
through a modern web application. This dashboard 
lists samples in chronological order for ease of use. 
For a more detailed analysis, the user can access 
raw sample data, or obtain a graphical representation 
of the Raman signal. The user can also interrogate 
areas of the signal using a dynamic graph function. 
The interface was built using a Flash web application 
framework, which permits tight integration with the 
AI models as well as integration with the database 
abstraction layers. Front-end templating was used to 
allow for consistent presentation on mobile and other 
devices. Bootstrap styling was used to present well 
on all browser types. The interface allows module 
additions, in terms of dashboard types, as required. 
Figure 8.21 shows the presentation of data analysis 
on the web interface. The dashboard can be accessed 
at http://watermon.rinodrive.com/, subject to user 
authorisation. 

Figure 8.20. Screenshot of the Rinolab secure data server.

https://app.rinolab.com/cit
https://app.rinolab.com/cit
http://watermon.rinodrive.com/
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8.9	 Artificial Intelligence/Machine 
Learning Software and Platform 
Summary

The literature indicated that RS, combined with 
machine learning methods and cross-validation, can 
be accurate in detecting target analytes in water. 
On that basis, the project team has successfully 
developed and tested AI/machine learning tools that 
use suitably trained AI models to detect nitrates and 
E. coli.

The data management aspect has been implemented 
by using the proprietary platform, Rinolab. This 
platform is specifically designed to securely capture 
and transmit laboratory data in encrypted form and to 
store them securely, and to maintain complete time-
stamped and auditable records of all interactions with 
the data by authorised users.

A presentation layer/user interface has been created 
that allows authorised users to access, interrogate, 
download and visualise the data results from live 
monitoring of water bodies – all in close to real time, 
i.e. with time delays measured as low as single-figure 
numbers of minutes.

As a general principle, larger quantities of training data 
will always create a more robust AI model, resulting in 
higher prediction accuracy. For example, arising from 
this project, E. coli detection accuracy would improve 
by using larger quantities of calibrated E. coli training 
data.

It was not possible to develop the phosphate AI model; 
further work may enable this aspect to be achieved, 
subject to the availability of sufficient calibrated data.

Figure 8.21. Raw data screen on the Watermon web application (the area of interest is highlighted).
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9	 Discussion of the Results

9.1	 Outcomes

The overall aim of the project was to create a fully 
operational end-to-end water quality monitoring 
platform targeting nitrates and E. coli using RS and 
AI and operating in close to real time. This objective 
was achieved, and the fully operational system, 
complete with ‘close-to-real-time’ parameter detection, 
was deployed for demonstration in two locations in 
County Cork. The system performed as expected: 
Raman spectrum data were collected, transmitted 
to the cloud-based database and analysed using 
the AI models developed during the project, and 
the results transmitted back for viewing on a mobile 
phone. During the field trials, no nitrate or E. coli 
contamination was detected in the natural waters 
tested (unlike the spiked river samples tested in the 
laboratory, when contamination was detected; see 
Chapters 4 and 5). Figure 9.1 shows the completed 
Watermon Buoy version ready for deployment, with 
trailer.

The Watermon buoy described in Chapter 6 was 
deployed in Cork Harbour at Crosshaven, County 
Cork (Figure 9.2), and on the Owenabue River at 
Ballinhassig, County Cork (Figure 9.3), for live testing. 
Data were collected using the probe installed in 
the buoy, which protruded to make contact with the 
water flowing below the hull of the buoy. No physical 
samples were taken into the buoy; this will form part of 
future work, as the LOC version progresses (it was not 
necessary for the buoy version developed as part of 
this project). Tests were conducted over a 2-hour and 
4-hour period, respectively, and the interval between 
Raman cycles varied between 10 and 60 minutes. 
A full testing cycle can take up to 18–20 minutes 
because of long integration processing times for the 
spectrometer’s imaging sensor; it is expected that 
this time could be shortened with further experience 
of the system. Data were harvested from the Raman 
spectrometer during the test periods and transmitted 
to the Rinolab secure data storage platform via the 

Figure 9.1. Completed Watermon Buoy version, ready for deployment.
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cellular network in the area. The AI models were 
applied to the data as they arrived at the platform, 
and results were displayed immediately on the web 
interface described in Chapter 8. The web interface 
is viewable on electronic devices that have internet 
connectivity – PC, tablet or mobile phone. The time 
taken from the conclusion of the Raman data collection 
cycle in the field to successful access of the results 
on a mobile phone while in the field was less than 
15 minutes. The primary factor influencing the time 

taken was the required communication time over the 
network at these locations.

The purpose of the Watermon platform was to identify 
the presence of nitrates or E. coli in the water body in 
which it was deployed. With the samples tested, the 
Buoy version and associated AI model successfully 
detected nitrates at concentrations as low as 30 mg/l to 
99% accuracy. An example of a river water test result 
is shown in Figure 9.4; the AI analysis result for this 
sample was ‘negative’, which indicates that the level 
of nitrates was below 30 mg/l, i.e. below the detection 
limit of the system, insofar as it has been shown to 
date. The system can detect E. coli at levels c. 250 cfu 
to 83% accuracy, lower than for nitrates, which reflects 
the fact that it is more difficult to detect this bacterium 
than nutrients. E. coli was not present at this level at 
the time of the demonstrations.

The project has also developed a proof-of-concept 
LOC version of the Watermon system that is capable 
of detecting nitrates using a probe system that is 100× 
cheaper than that deployed in the Car-boot and Buoy 
versions. The LOC version was developed to a lower 
TRL than the Buoy version, and was demonstrated 
in the laboratory. The innovative DEP technology for 
E. coli detection, in collaboration with the University 

Figure 9.2. Live demonstration at Crosshaven, County Cork.

Figure 9.3. Live demonstration at Owenabue River, 
Ballinhassig, County Cork.



49

K. Fitzgibbon et al. (2016-W-LS-12)

of Jena, Germany, was also demonstrated and will be 
combined with the LOC version in follow-up work.

This follow-up work would entail further development 
and testing of the new LOC version, and combining 
it with the AI model, as well as building a substantial 
water definition database for various regions to train 
local models. This would allow the AI models to be 
trained for region-specific water differences. As this 
approach to testing is rolled out we would expect 
future work to involve collating and training these latest 
models. For example, the current model could be 
retrained for use in peatland areas (which have a high 
humic content and extra Raman background) using an 
estimated 200 laboratory-calibrated samples.

9.1.1	 Outcome on the nitrates model

The AI model for nitrate detection has been shown 
to be very effective at detecting nitrates at 30 mg/l 
or above in river and drinking water. The test scores 
indicate > 99% accuracy at this detection limit. The 
accuracy of the method may be affected by reducing 
the system variables used, i.e. integration time or 
number of averages. Accuracy would be expected to 
increase and/or the detection limit would be expected 
to reduce when using larger labelled training datasets.

9.1.2	 Outcome on the Escherichia coli model

In cross-validation, the AI model was able to detect a 
level of E. coli above the threshold of 250 cfu with a 
high level of accuracy (83.4%). Further development 
would be required to target levels relevant to drinking 
water, for example.

At such levels, it was not possible to identify positive 
E. coli samples by deterministic inspection of the 
spectrum, or by analysis of a single spectrum in 
isolation. This emphasises the superior ability of the 
AI model, albeit at relatively higher concentrations, 
i.e. 250 cfu. The model is able to identify E. coli using 
the set of important features identified in model 
generation.

The E. coli model was trained on data from samples 
that contained some level of E. coli. The team 
proposes to develop, in the future, a larger training 
set comprising samples containing E. coli and 
also samples in which no E. coli is present. This 
process is very likely to improve the accuracy and 
lower the concentration at which such accuracy is 
obtained. Based on the project team’s experience, 
and as can be inferred from the literature (Beleites 
et al., 2013), it is reasonable to expect a further 
5–10% improvement in prediction accuracy with an 
additional 100–200 samples.

9.2	 Learnings

9.2.1	 Learnings relative to the project vision

The vision of the project was to make progress 
towards a low-cost autonomous system using RS 
and AI, and capable of operating in close to real 
time, to detect contaminants and pathogens in water. 
The project has succeeded in creating an end-to-
end operational system using this approach for 
detecting E. coli and nitrates and has demonstrated 
the autonomous probe-based system prototype in 
the operational environment, representing a TRL 
of 7. Given that the initial system TRL was 2 (and 
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Figure 9.4. Example of Raman spectrum results from Owenabue River (nitrates not detected).
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the individual components at TRL 3 or 4), this is a 
remarkable achievement. It is worth noting that this 
has been achieved despite delays and a significant 
loss of know-how from the original project team before 
the commencement of the project.

Considerable effort was devoted to the detailed 
analysis of various options for the spectroscopy 
equipment to be used in the Car-boot and Buoy 
versions. Factors investigated included not only the 
functional requirements for high-quality, accurate 
Raman spectra to be collected but also issues related 
to power management, such as the appropriate trade-
offs between power use versus spectrum quality and 
cooling needs within the systems, and the trade-offs 
between all of the above and equipment cost.

The analysis clearly showed that, to be a low-cost 
system, the Raman sensing equipment would have 
to be significantly miniaturised, ideally down to LOC 
scale. The fully operational versions that have been 
created through this project – the Car-boot and the 
Buoy versions – both contain equipment that is 
relatively expensive and somewhat bulky. They also 
draw more power than would ideally be the case – 
resulting in a need for cooling in the Buoy version, for 
example. The nature and cost of the present versions 
are obstacles both to deploying greater numbers and 
to the long-term unsupervised deployment of the Buoy 
version. However, a LOC-scale unit, with associated 
reduced housing, would be cheaper to build and 
also less conspicuous, thereby reducing the risk of 
unwanted interference or theft. The project has made 
significant progress towards such a LOC version, as 
described in Chapter 7.

9.2.2	 Factors affecting the success of this 
method

A number of factors affect the potential success of 
the RS/AI method investigated in this project. There 
are factors relating to the physical equipment used 
that cannot be adjusted by the operator, such as the 
power requirements of equipment (e.g. the laser), 
the sensitivity of the spectrometer, the nature of 
light filtering, etc. There are also operator-selected 
variables. RS determines a spectrum by integrating 
measurements over a time period, which is a variable 
that can be set. RS uses an averaging method to 
arrive at final spectrum results, for a given reading 
cycle, and the number of averages is also a variable 

that can be adjusted. All of these affect the detail and 
noisiness of the RS spectrum received, and therefore 
affect the ability of the model to detect relevant 
features during training and the ability to detect the 
target parameter with the completed AI model. The 
best results were obtained by using a single set-up of 
the equipment and keeping the variables unchanged, 
to create the data training set for the nitrates model. In 
addition, longer integration times and a higher number 
of averages improved the sensitivity of the method, 
i.e. lowered the detection threshold for the presence of 
nitrates.

Several key aspects of the project have been proven 
fully and can be reapplied to further iterations of the 
overall sensing platform, such as for the expected 
LOC version that the project team envisage being 
developed to TRL 6/7. These include all the elements 
related to data handling and communication within 
the platform/buoy, transmission to the cloud, the 
method of analysing the data via AI algorithms and 
communicating results that can be viewed via PC 
or mobile phone, all in close to real time, i.e. under 
10 minutes from time of data capture.

Key areas for further work include:

●● Further calibration of the AI model for E. coli 
detection, by creating an expanded training 
dataset.

●● Further development of the LOC version, including 
addressing sample handling and preparation 
within the context of the autonomous platform.

●● Developing additional AI models to detect more 
parameters of interest, for both bacteria and 
other non-pathogen parameters. In that regard, 
the learning from Watermon will significantly help 
when addressing the challenge of working with 
and detecting live bacteria.

9.3	 Commercial Outcomes

The success of the project in applying AI to RS data 
has resulted in the industry partner, Hydrolight, 
and sister companies pursuing further commercial 
opportunities. In particular, the knowledge and skills 
developed through the project provided the technical 
depth to allow the company principals to form Labskin 
Ltd, which has been acquired by Integumen plc, a 
company listed on the London Stock Exchange. In 
particular, the project enabled Hydrolight to broaden 
and deepen its capacity in applying AI algorithms 
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to high-volume spectroscope data, for anomaly and 
feature detection. This enhanced capacity forms 
the basis for Labskin Ltd’s innovative approach to 
monitoring the microbiome balance levels of incubating 
skin samples, and automates tasks as a result, 
cost-effectively accelerating the research, test and 
development of skin products verified on laboratory-
grown human skin without the need for animal testing.

Integumen plc has acquired a significant interest 
in Modern Water, a US water technology company. 
Together, these companies have raised over €8 million 
in investment funding since the start of the project, 
and are pursuing further research grants valued at 
c. €4 million to the companies, stemming from the 
technology ideas that were pursued through Watermon 
(see also section 10.2).



52

10	 Conclusions and Recommendations

10.1	 Conclusions

The literature indicated that RS, combined with 
machine learning methods and cross-validation, can 
be accurate in detecting target analytes in water. 
Together with the growing capabilities of cloud-based 
AI software platforms, using this approach it was 
posited that an improved technique for real-time water 
quality monitoring could be achieved. The system was 
envisaged as using a single set of equipment to capture 
Raman spectra, followed by application of different AI 
models to the data, one for each target parameter.

The project has verified this hypothesis by developing 
and testing Watermon, an end-to-end RS-based 
detection system that uses suitably trained AI models 
to detect nitrates and E. coli.

The AI model for nitrate detection has been shown 
to be very effective at detecting nitrates at 30 mg/l 
or above in river and drinking water. The test scores 
indicate > 99% accuracy at this detection limit. The 
accuracy of the method may be affected by reducing 
the system variables, i.e. integration time or number of 
averages used. It is expected that accuracy could be 
increased, and/or the detection limit reduced, by using 
larger labelled training datasets.

In cross-validation, the AI model was able to detect 
a level of E. coli above the threshold of 250 cfu with 
a high level of confidence (83.4%). At such levels, it 
was not possible to identify positive E. coli samples 
by visual inspection of the spectrum, or analysis of 
a single spectrum in isolation. This emphasises the 
superior ability of the AI model, albeit at relatively 
higher concentrations, i.e. 250 cfu. The model is able 
to identify the E. coli using the set of important features 
identified in model generation.

The success of the Watermon platform is predicated 
on good-quality calibrated data being used to train 
the AI model. As a general principle, larger quantities 
of training data will always create a more robust AI 
model, resulting in higher prediction accuracy. As 
further work based on this project is undertaken, 
it could be expected that, with larger quantities of 
calibrated E. coli training data, detection accuracy 
levels of the E. coli model could improve significantly.

10.1.1	 Specific conclusions:

1.	 AI models can be successfully trained and 
deployed to detect water quality parameters, in 
close to real time, when used in conjunction with 
sensing techniques such as RS, which produce 
large spectrum datasets.

2.	 RS has been combined with trained AI models to 
create a system able to detect nitrates at levels as 
low as 30 mg/l, at an accuracy (confidence) level 
of 99%.

3.	 The system can detect E. coli at concentrations 
c. 250 cfu, with 83.4% confidence levels.

4.	 The full end-to-end Car-boot and Buoy systems 
operate in close to real time, i.e. less than 
5 minutes from the end of collection of Raman 
spectra to the receipt of results on a mobile 
device.

5.	 The system depends on the availability of suitable 
labelled data to train the AI models. These data 
would ideally be collected using sensing devices 
similar to those used in the field equipment. The 
accuracy of detection depends in part on the 
quantity and quality of training data available. 
Additional data can improve the system accuracy, 
through iterative retraining of the models.

6.	 The LOC version of the system has successfully 
detected E. coli at high concentrations.

7.	 Phosphate identification proved inconclusive in 
testing – the Raman signature of this compound 
was not as amenable to detection as nitrates 
using the equipment employed in this project.

10.2	 Project Outputs

The project resulted in a number of specific outputs.

10.2.1	 Physical detection devices

Four versions of an innovative water quality-sensing 
platform were developed and demonstrated as part 
of the project in an iterative manner, i.e. further 
refinements were incorporated at each successive 
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stage. The versions and the stages of development 
achieved are:

1.	 laboratory-scale version: fully operational in a 
laboratory environment;

2.	 portable Car-boot version: to TRL 7;

3.	 autonomous Buoy version: to TRL 7; and

4.	 LOC version: to TRL c. 3.

The iterative approach allowed new learnings to be 
incorporated during the process.

10.2.2	 Detection artifical intelligence software

AI models were created and trained for the detection 
of two water quality parameters: nitrates and E. coli. 
These have been deployed on a cloud-based platform 
that interacts with incoming spectroscopy data and 
issues results of analysis in real time.

10.2.3	 Communication and dissemination

The results of Watermon have been disseminated at 
two conferences, ENVIRON 2019 and the Seventh 
European Workshop on Optical Fibre Sensors 2019. 
Two journal publications are planned, one of which is 
at an advanced stage. Some further experiments are 
required, which were delayed by the COVID-19 crisis. 
We expect to complete these works in the near future.

Dr Chinna Devarapu of the Watermon project team 
demonstrated aspects of the project at the Irish 
Photonic Integration Centre’s (IPIC) Culture Night at 
Tyndall Research Institute in 2019, attended by around 
250 delegates (Figure 10.1).

10.2.4	 Labskin/Integumen follow-on projects

As a result of the project, Labskin/Integumen has 
engaged the CAPPA Research Centre at MTU to 
conduct a direct-funded feasibility study investigating 
detecting Covid-19 virus in wastewater using 
photonics-based detection techniques and AI. The 
company intends to build on this work in a major 
further research project involving international partners 
(Murray, 2020).

A collaboration between Integumen and Modern Water 
is also being developed following the conclusion of the 
project; it includes the Nimbus Research Centre  

at MTU and aims to build an integrated network of 
river water quality-sensing devices in a US city’s 
environs. Integumen has opened discussions with 
MTU regarding licensing of the intellectual property 
arising from the Watermon project for this purpose.

10.3	 Recommendations

10.3.1	 Technology development – sensing 
system using Raman spectroscopy and 
artifical intelligence

●● The project has shown the potential for further 
work to develop the LOC version from its current 
proof-of-concept stage into a full end-to-end, 
high-TRL prototype. This technology should 
be developed further; at the time of writing, the 
project team continues to pursue this opportunity.

●● DEP has shown potential to act as a concentrating 
technique for E. coli detection for RS detection, 
and should be examined further. This avenue of 
development will be explored by the project team.

●● The system has shown the potential to detect 
additional parameters. A feasibility study to 

Figure 10.1. Dr Chinna Devarapu at the IPIC culture 
night, 2019.
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determine the most appropriate target analytes, in 
terms of Raman detection with AI, would identify 
the most fruitful avenues for investigation in that 
regard, and should be pursued. Further work is 
required to develop an AI model for phosphates.

●● Further work should be undertaken to identify 
more precisely the level of sensitivity of the system 
to integration time and number of averages used, 
for nitrate and E. coli detection in the first instance.

●● The detection accuracy of the system as 
developed to date would be improved by further 
training of the relevant AI model with additional 
labelled E. coli samples. The SOPs developed 
allow this to be done efficiently. Equally, the AI 
models have been developed to such a degree 
that future training of the models no longer 
requires expert computer scientists, and could be 
carried out by most researchers with a moderate 
level of data-handling knowledge.

10.3.2	 Policy

●● The project aimed to create an additional 
innovative sensing system for real-time detection 

of water quality parameters, to support the existing 
water quality monitoring policies, programmes 
and requirements under the Water Framework 
Directive, the Bathing Water Quality legislation, 
etc. It has demonstrated the ability to detect 
two such parameters, nitrates and E. coli, using 
the system. This result provides further support 
for the concept of using networks of catchment 
monitoring stations to act as real-time red flag 
warning systems for pollution events.

●● In terms of policy development, the project 
team considers that the outcomes of the project 
support a policy of developing such sensing 
networks in river catchments and bathing areas, 
using suitable ranges of sensors. To enable such 
networks, consideration should be given to the 
most suitable communications infrastructure 
and protocols to adopt, in terms of cost, data 
transmission requirements and communications 
reliability. Creating comprehensive multi-modal 
communication gateway networks could be 
considered, to enable such whole-of-catchment 
monitoring.
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AN GHNÍOMHAIREACHT UM CHAOMHNÚ COMHSHAOIL
Tá an Ghníomhaireacht um Chaomhnú Comhshaoil (GCC) freagrach as an 
gcomhshaol a chaomhnú agus a fheabhsú mar shócmhainn luachmhar do 
mhuintir na hÉireann. Táimid tiomanta do dhaoine agus don chomhshaol a 
chosaint ó éifeachtaí díobhálacha na radaíochta agus an truaillithe.

Is féidir obair na Gníomhaireachta a  
roinnt ina trí phríomhréimse:

Rialú: Déanaimid córais éifeachtacha rialaithe agus comhlíonta 
comhshaoil a chur i bhfeidhm chun torthaí maithe comhshaoil a 
sholáthar agus chun díriú orthu siúd nach gcloíonn leis na córais sin.

Eolas: Soláthraímid sonraí, faisnéis agus measúnú comhshaoil atá 
ar ardchaighdeán, spriocdhírithe agus tráthúil chun bonn eolais a 
chur faoin gcinnteoireacht ar gach leibhéal.

Tacaíocht: Bímid ag saothrú i gcomhar le grúpaí eile chun tacú 
le comhshaol atá glan, táirgiúil agus cosanta go maith, agus le 
hiompar a chuirfidh le comhshaol inbhuanaithe.

Ár bhFreagrachtaí

Ceadúnú
Déanaimid na gníomhaíochtaí seo a leanas a rialú ionas nach 
ndéanann siad dochar do shláinte an phobail ná don chomhshaol:
•  saoráidí dramhaíola (m.sh. láithreáin líonta talún, loisceoirí, 

stáisiúin aistrithe dramhaíola);
•  gníomhaíochtaí tionsclaíocha ar scála mór (m.sh. déantúsaíocht 

cógaisíochta, déantúsaíocht stroighne, stáisiúin chumhachta);
•  an diantalmhaíocht (m.sh. muca, éanlaith);
•  úsáid shrianta agus scaoileadh rialaithe Orgánach 

Géinmhodhnaithe (OGM);
•  foinsí radaíochta ianúcháin (m.sh. trealamh x-gha agus 

radaiteiripe, foinsí tionsclaíocha);
•  áiseanna móra stórála peitril;
•  scardadh dramhuisce;
•  gníomhaíochtaí dumpála ar farraige.

Forfheidhmiú Náisiúnta i leith Cúrsaí Comhshaoil
•  Clár náisiúnta iniúchtaí agus cigireachtaí a dhéanamh gach 

bliain ar shaoráidí a bhfuil ceadúnas ón nGníomhaireacht acu.
•  Maoirseacht a dhéanamh ar fhreagrachtaí cosanta comhshaoil na 

n-údarás áitiúil.
•  Caighdeán an uisce óil, arna sholáthar ag soláthraithe uisce 

phoiblí, a mhaoirsiú.
• Obair le húdaráis áitiúla agus le gníomhaireachtaí eile chun dul 

i ngleic le coireanna comhshaoil trí chomhordú a dhéanamh ar 
líonra forfheidhmiúcháin náisiúnta, trí dhíriú ar chiontóirí, agus 
trí mhaoirsiú a dhéanamh ar leasúchán.

•  Cur i bhfeidhm rialachán ar nós na Rialachán um 
Dhramhthrealamh Leictreach agus Leictreonach (DTLL), um 
Shrian ar Shubstaintí Guaiseacha agus na Rialachán um rialú ar 
shubstaintí a ídíonn an ciseal ózóin.

•  An dlí a chur orthu siúd a bhriseann dlí an chomhshaoil agus a 
dhéanann dochar don chomhshaol.

Bainistíocht Uisce
•  Monatóireacht agus tuairisciú a dhéanamh ar cháilíocht 

aibhneacha, lochanna, uiscí idirchriosacha agus cósta na 
hÉireann, agus screamhuiscí; leibhéil uisce agus sruthanna 
aibhneacha a thomhas.

•  Comhordú náisiúnta agus maoirsiú a dhéanamh ar an gCreat-
Treoir Uisce.

•  Monatóireacht agus tuairisciú a dhéanamh ar Cháilíocht an 
Uisce Snámha.

Monatóireacht, Anailís agus Tuairisciú ar  
an gComhshaol
•  Monatóireacht a dhéanamh ar cháilíocht an aeir agus Treoir an AE 

maidir le hAer Glan don Eoraip (CAFÉ) a chur chun feidhme.
•  Tuairisciú neamhspleách le cabhrú le cinnteoireacht an rialtais 

náisiúnta agus na n-údarás áitiúil (m.sh. tuairisciú tréimhsiúil ar 
staid Chomhshaol na hÉireann agus Tuarascálacha ar Tháscairí).

Rialú Astaíochtaí na nGás Ceaptha Teasa in Éirinn
•  Fardail agus réamh-mheastacháin na hÉireann maidir le gáis 

cheaptha teasa a ullmhú.
•  An Treoir maidir le Trádáil Astaíochtaí a chur chun feidhme i gcomhair 

breis agus 100 de na táirgeoirí dé-ocsaíde carbóin is mó in Éirinn.

Taighde agus Forbairt Comhshaoil
•  Taighde comhshaoil a chistiú chun brúnna a shainaithint, bonn 

eolais a chur faoi bheartais, agus réitigh a sholáthar i réimsí na 
haeráide, an uisce agus na hinbhuanaitheachta.

Measúnacht Straitéiseach Timpeallachta
•  Measúnacht a dhéanamh ar thionchar pleananna agus clár beartaithe 

ar an gcomhshaol in Éirinn (m.sh. mórphleananna forbartha).

Cosaint Raideolaíoch
•  Monatóireacht a dhéanamh ar leibhéil radaíochta, measúnacht a 

dhéanamh ar nochtadh mhuintir na hÉireann don radaíocht ianúcháin.
•  Cabhrú le pleananna náisiúnta a fhorbairt le haghaidh éigeandálaí 

ag eascairt as taismí núicléacha.
•  Monatóireacht a dhéanamh ar fhorbairtí thar lear a bhaineann le 

saoráidí núicléacha agus leis an tsábháilteacht raideolaíochta.
•  Sainseirbhísí cosanta ar an radaíocht a sholáthar, nó maoirsiú a 

dhéanamh ar sholáthar na seirbhísí sin.

Treoir, Faisnéis Inrochtana agus Oideachas
•  Comhairle agus treoir a chur ar fáil d’earnáil na tionsclaíochta 

agus don phobal maidir le hábhair a bhaineann le caomhnú an 
chomhshaoil agus leis an gcosaint raideolaíoch.

•  Faisnéis thráthúil ar an gcomhshaol ar a bhfuil fáil éasca a 
chur ar fáil chun rannpháirtíocht an phobail a spreagadh sa 
chinnteoireacht i ndáil leis an gcomhshaol (m.sh. Timpeall an Tí, 
léarscáileanna radóin).

•  Comhairle a chur ar fáil don Rialtas maidir le hábhair a 
bhaineann leis an tsábháilteacht raideolaíoch agus le cúrsaí 
práinnfhreagartha.

•  Plean Náisiúnta Bainistíochta Dramhaíola Guaisí a fhorbairt chun 
dramhaíl ghuaiseach a chosc agus a bhainistiú.

Múscailt Feasachta agus Athrú Iompraíochta
•  Feasacht chomhshaoil níos fearr a ghiniúint agus dul i bhfeidhm 

ar athrú iompraíochta dearfach trí thacú le gnóthais, le pobail 
agus le teaghlaigh a bheith níos éifeachtúla ar acmhainní.

•  Tástáil le haghaidh radóin a chur chun cinn i dtithe agus in ionaid 
oibre, agus gníomhartha leasúcháin a spreagadh nuair is gá.

Bainistíocht agus struchtúr na Gníomhaireachta um 
Chaomhnú Comhshaoil
Tá an ghníomhaíocht á bainistiú ag Bord lánaimseartha, ar a bhfuil 
Ard-Stiúrthóir agus cúigear Stiúrthóirí. Déantar an obair ar fud cúig 
cinn d’Oifigí:
• An Oifig um Inmharthanacht Comhshaoil
• An Oifig Forfheidhmithe i leith cúrsaí Comhshaoil
• An Oifig um Fianaise is Measúnú
• Oifig um Chosaint Radaíochta agus Monatóireachta Comhshaoil
• An Oifig Cumarsáide agus Seirbhísí Corparáideacha
Tá Coiste Comhairleach ag an nGníomhaireacht le cabhrú léi. Tá 
dáréag comhaltaí air agus tagann siad le chéile go rialta le plé a 
dhéanamh ar ábhair imní agus le comhairle a chur ar an mBord.



Identifying Pressures
The European Union (EU) Water Framework Directive, 
transposed into national legislation, has led to the 
implementation of water quality monitoring programmes 
in Ireland and across the EU. In Ireland, high nutrient 
concentrations in watercourses and periodic pathogen 
contamination of bathing waters continue to be causes 
of concern. Apart from knowing where and when to take 
samples for analysis, one of the biggest challenges for 
authorities is the time required and cost of investigating 
whether or not the water quality is safe for drinking, 
bathing or other uses. The methods usually involve field 
collection and transportation of samples to a laboratory, 
and in the case of some tests, such as for pathogens, 
sample preparation by culturing, followed finally by 
analysis. These testing challenges apply for nutrients, 
pathogens and other hazardous compounds. Together, 
these factors act as drivers in the effort to develop low-
cost, low-maintenance, reusable water quality monitoring 
sensors that can act continuously in real time, detecting 
the presence and concentration of relevant parameters in 
a cost-effective manner. 

Informing Policy
The project aimed to create an additional innovative 
sensing system for real-time detection of water quality 
parameters, to support the existing water quality 
monitoring policies, programmes and requirements 
under the Water Framework Directive, the Bathing Water 
Quality legislation, etc. It has demonstrated the ability 
to detect two such parameters, nitrates and Escherichia 
coli (E. coli), using the system. This result provides 
further support for the concept of using networks of 
catchment monitoring stations, to act as real-time “red 
flag” warning systems for pollution events. The outcomes 
of the project support a policy of developing dispersed 

autonomous sensing networks in river catchments and 
bathing areas, using suitable ranges of sensors. To enable 
such networks, consideration should be given to the most 
suitable communications infrastructure and protocols to 
adopt, in terms of cost, data transmission requirements 
and communications reliability. Creating comprehensive 
multi-modal communication gateway networks could 
be considered, to enable such whole-of-catchment 
monitoring.

Developing Solutions
Previous research indicated that Raman spectroscopy (RS) 
combined with artificial intelligence (AI) methods could be 
a feasible way to detect certain target analytes in water. 
The project aimed to use these technologies to develop 
an innovative, low-cost autonomous system for detection 
of water-borne nutrients (nitrates and phosphates) and 
pathogens (specifically E. coli), and which is capable of 
operating in close to real time. A Lab-on-Chip model 
was envisaged as the ideal project outcome. An iterative 
approach allowed parallel progress on different aspects 
of the system, which mitigated the technical challenges of 
creating the Lab-on-Chip version.

The project has verified the hypothesis by developing 
and demonstrating Watermon, an end-to-end RS-based 
detection system that uses AI models to rapidly detect 
nitrates and E. coli. The AI model for nitrates was very 
effective (c. 99% accuracy) at detecting nitrates at 30 mg/l 
or above in river and drinking water. The E. coli AI model 
was able to detect the pathogen at 250 colony-forming 
units with an accuracy of c. 83%. At such levels, it was not 
possible to identify positive E. coli samples by traditional 
analysis of the data, i.e. inspection of a single spectrum, 
underscoring the superior ability of the AI model, albeit at 
relatively higher concentrations. 
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