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ENVIRONMENTAL PROTECTION AGENCY
The Environmental Protection Agency (EPA) is responsible for 
protecting and improving the environment as a valuable asset 
for the people of Ireland. We are committed to protecting people 
and the environment from the harmful effects of radiation and 
pollution.

The work of the EPA can be 
divided into three main areas:

Regulation: We implement effective regulation and environmental 
compliance systems to deliver good environmental outcomes and 
target those who don’t comply.

Knowledge: We provide high quality, targeted and timely 
environmental data, information and assessment to inform 
decision making at all levels.

Advocacy: We work with others to advocate for a clean, 
productive and well protected environment and for sustainable 
environmental behaviour.

Our Responsibilities

Licensing
We regulate the following activities so that they do not endanger 
human health or harm the environment:
•  waste facilities (e.g. landfills, incinerators, waste transfer 

stations);
•  large scale industrial activities (e.g. pharmaceutical, cement 

manufacturing, power plants);
•  intensive agriculture (e.g. pigs, poultry);
•  the contained use and controlled release of Genetically 

Modified Organisms (GMOs);
•  sources of ionising radiation (e.g. x-ray and radiotherapy 

equipment, industrial sources);
•  large petrol storage facilities;
•  waste water discharges;
•  dumping at sea activities.

National Environmental Enforcement
•  Conducting an annual programme of audits and inspections of 

EPA licensed facilities.
•  Overseeing local authorities’ environmental protection 

responsibilities.
•  Supervising the supply of drinking water by public water 

suppliers.
•  Working with local authorities and other agencies to tackle 

environmental crime by co-ordinating a national enforcement 
network, targeting offenders and overseeing remediation.

•  Enforcing Regulations such as Waste Electrical and Electronic 
Equipment (WEEE), Restriction of Hazardous Substances 
(RoHS) and substances that deplete the ozone layer.

•  Prosecuting those who flout environmental law and damage the 
environment.

Water Management
•  Monitoring and reporting on the quality of rivers, lakes, 

transitional and coastal waters of Ireland and groundwaters; 
measuring water levels and river flows.

•  National coordination and oversight of the Water Framework 
Directive.

•  Monitoring and reporting on Bathing Water Quality.

Monitoring, Analysing and Reporting on the 
Environment
•  Monitoring air quality and implementing the EU Clean Air for 

Europe (CAFÉ) Directive.
•  Independent reporting to inform decision making by national 

and local government (e.g. periodic reporting on the State of 
Ireland’s Environment and Indicator Reports).

Regulating Ireland’s Greenhouse Gas Emissions
•  Preparing Ireland’s greenhouse gas inventories and projections.
•  Implementing the Emissions Trading Directive, for over 100 of 

the largest producers of carbon dioxide in Ireland.

Environmental Research and Development
•  Funding environmental research to identify pressures, inform 

policy and provide solutions in the areas of climate, water and 
sustainability.

Strategic Environmental Assessment
•  Assessing the impact of proposed plans and programmes on the 

Irish environment (e.g. major development plans).

Radiological Protection
•  Monitoring radiation levels, assessing exposure of people in 

Ireland to ionising radiation.
•  Assisting in developing national plans for emergencies arising 

from nuclear accidents.
•  Monitoring developments abroad relating to nuclear 

installations and radiological safety.
•  Providing, or overseeing the provision of, specialist radiation 

protection services.

Guidance, Accessible Information and Education
•  Providing advice and guidance to industry and the public on 

environmental and radiological protection topics.
•  Providing timely and easily accessible environmental 

information to encourage public participation in environmental 
decision-making (e.g. My Local Environment, Radon Maps).

•  Advising Government on matters relating to radiological safety 
and emergency response.

•  Developing a National Hazardous Waste Management Plan to 
prevent and manage hazardous waste.

Awareness Raising and Behavioural Change
•  Generating greater environmental awareness and influencing 

positive behavioural change by supporting businesses, 
communities and householders to become more resource 
efficient.

•  Promoting radon testing in homes and workplaces and 
encouraging remediation where necessary.

Management and structure of the EPA
The EPA is managed by a full time Board, consisting of a Director 
General and five Directors. The work is carried out across five 
Offices:
•  Office of Environmental Sustainability
•  Office of Environmental Enforcement
•  Office of Evidence and Assessment
•  Office of Radiation Protection and Environmental Monitoring
•  Office of Communications and Corporate Services
The EPA is assisted by an Advisory Committee of twelve members 
who meet regularly to discuss issues of concern and provide 
advice to the Board.
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Executive Summary

Primary biological aerosol particles consist of particles 
such as bacteria, fungal spores and pollen. The 
deleterious impacts of such particles on both human 
and plant health have grown in importance as our 
understanding of their concentration and composition 
has developed. Pollen, in particular, has a significant 
effect on the public during much of the year, with up 
to 30% of the current European population having 
some form of pollen allergy (Lake et al., 2017). Indeed, 
allergy prevalence has significantly increased in the 
last few decades, mainly due to changes in climate. 
As a result, the number of allergy sufferers is expected 
to more than double by the year 2060 (Beggs et al., 
2017; Lake et al., 2017).

While many of those who suffer from a pollen allergy 
(hay fever) see it as an inconvenience and a quality-
of-life issue, the same cannot be said for those with 
underlying respiratory diseases. Ireland has the fourth 
highest rate of asthma in the world, and thus pollen 
represents a serious risk to the Irish public, as it can 
trigger and exacerbate asthma attacks. However, there 
is currently no established aeroallergen network in 
Ireland to provide detailed and accurate forecasts for 
those at risk. Thus, mitigation of exposure to pollen is 
non-existent.

This report describes the establishment of Ireland’s 
first pollen monitoring network, which has been used 
to determine both the concentrations and the species 
of airborne pollen. This was followed by the creation of 
pollen forecasts from the data collected. Furthermore, 
several recommendations on the size, scale and cost 
of a potential Irish pollen monitoring network were 
formulated.

Ambient sampling in both urban (Dublin) and rural 
(Carlow) settings was undertaken using traditional 
microscopy methodologies (Hirst-type sampler). 
Significant differences between the concentrations 
of pollen and pollen species distribution at each site 
were seen during the sampling phase of the project. 
Grass pollen (Poaceae) dominated at both the Carlow 
(70% of total pollen) and Dublin (32% of total pollen) 
sites. However, the diversity of pollen species was 
greater at the Dublin site than at the Carlow site. 
These recently collected data were combined with 

previously unanalysed historical data from the 1970s. 
This allowed the construction of the first Irish pollen 
calendar, highlighting the concentrations of significant 
pollen species present in the Irish atmosphere at 
different times of the year. 

In addition to using traditional pollen analysis 
methodologies, real-time instruments measuring both 
light scattering and fluorescence was co-located at 
the Dublin site to evaluate their capabilities versus 
traditional methods and gauge the potential for their 
use in an automated network. A wideband integrated 
bioaerosol sensor – new electronics option (WIBS-
NEO) and a Japanese pollen counter were compared 
with the impaction methodologies. Correlations 
between the instruments were observed, with Pearson 
coefficients (r) of approximately 0.5 noted for both 
devices and the analysis taking a fraction of the time 
needed when using traditional methods. However, in 
general, the instruments were unable to differentiate 
between species of pollen, instead acting more as 
a bulk pollen detector. The same WIBS-NEO data 
were also compared with ambient fungal spore 
concentration data, with total fungal spores and 
Alternaria spores returning correlations of r = 0.7–0.8.

Using the ambient pollen data collected in conjunction 
with concurrently collected meteorological parameters 
and phenological observations, several predictive pollen 
models were created, and these are now capable 
of forecasting pollen concentrations for a variety of 
species. Both numerical and classification models were 
used and, in the case of the numerical forecasts, an 
ensemble approach using the mean and median of the 
models yielded the most accurate results (predicted vs 
observed). The Spearman’s rank correlation coefficient 
for these models varied between approximately 0.7 and 
0.8 for the species modelled (birch, alder, grass).

Finally, recommendations related to the size, 
geographical placement, establishment and cost 
of a potential Irish pollen monitoring network were 
considered and outlined. This last chapter of this report 
outlines the potential for Ireland to skip a generation 
of sampling equipment and join the select group 
of countries with novel, real-time pollen monitoring 
networks. 
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1	 Introduction

1.1	 Background

1.1.1	 Importance of pollen monitoring

The atmosphere is a diverse environment containing 
a vast range of gaseous and particulate matter 
(PM) components, with bioaerosols representing 
approximately 16.5% of PM2.5 (PM ≤ 2.5 μm in 
diameter) and 16.3% of PM10 (PM ≤ 10 μm in diameter) 
atmospheric concentrations, respectively (Hyde 
and Mahalov, 2019). Pollen grains are the male 
reproductive cells of flowering plants and trees and 
represent the coarser fraction of the bioaerosol class, 
generally in the range of 10–100 μm (Sofiev and 
Bergmann, 2013). Recently it has been determined 
that atmospheric concentrations of pollen may 
influence the hydrological cycle and climate in the form 
of cloud condensation/ice nuclei, which affect cloud 
formation and radiative forcing of the planet (Després 
et al., 2012; Diehl et al., 2001; Pummer et al., 2012; 
Sun and Ariya, 2006). However, pollen has more 
notoriously been associated with triggering undesirable 
health effects in humans, such as allergic rhinitis (hay 
fever) (Jantunen et al., 2012), and exacerbating other 
existing medical conditions such as chronic obstructive 
pulmonary disease (COPD), eczema and asthma. 
More worryingly, the prevalence of pollen allergies has 
increased considerably in recent years (D’Amato et al., 
2007). Approximately 30% of the European population 
currently have a pollen allergy. This figure is predicted 
to more than double by 2060 (Lake et al., 2017), as 
this increasing trend is expected to continue (Beggs 
et al., 2017; Lake et al., 2017). Therefore, a reliable 
pollen forecasting system represents a valuable tool 
that can not only warn allergy sufferers of periods of 
high pollen exposure but also aid in optimising the 
medical treatment of patients. Monitoring the ambient 
concentrations of pollen and other bioaerosols can 
also provide important information for agricultural 
purposes, for example in plant pathology, predicting 
crop yields and assessing plant distribution (Bastl 
et al., 2016). As a result, monitoring efforts can help 
in determining the presence of invasive species such 
as ragweed and plant diseases and preventing their 
spread.

Despite these significant health, agricultural and 
climate implications, the monitoring of anthropogenic 
pollutants has historically taken precedence over 
that of bioaerosols. However, increasing public 
awareness of the risks posed by allergies and other 
respiratory diseases has led to increased interest in 
the development of accurate, rapid and predictive 
approaches to monitoring pollen, fungal spores and 
other bioaerosols in our atmosphere. This increased 
interest in advancing and expanding bioaerosol 
monitoring networks has come about as a result of 
climatic concerns, which will affect global bioaerosol 
distributions and therefore have effects not only on 
human health, but also on the ecology of the planet. 
Global warming has had serious effects on the 
planet, including harmful effects on human health. 
It is estimated that over 1 million people have lost 
their lives as a result of the effects of global warming 
since 2000, with a further 800,000 deaths caused 
annually by air pollution (Farmer and Cook, 2013). 
The increasing global temperatures also affect the 
phenology and diversity of ecosystems. This has 
been observed in the commencement and duration 
of the seasons: spring starts earlier than it used to 
and summer ends later, resulting in extended growing 
periods for plants and higher concentrations of 
ambient pollen released (Farmer and Cook, 2013).

1.1.2	 Pollen monitoring in Ireland

Other European countries have been routinely 
monitoring pollen for decades, since the establishment 
of the European Aeroallergen Network (EAN) in 
1986 (Nilsson, 1988). Although Ireland was one of 
the original countries to join the EAN, its own initial 
monitoring efforts were prematurely adjourned in the 
early 1980s. A recent study documented and mapped 
all the active pollen and fungal spore monitoring sites 
around the globe; thus, the original Irish monitoring 
site established in 1988 was not included (Buters 
et al., 2018; Nilsson, 1988). By the end of 2016, over 
525 sampling sites existed across Europe with an 
additional 182 and 151 sampling sites in Asia and the 
USA, respectively (Buters et al., 2018). However, since 
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the 1980s Ireland has largely refrained from carrying 
out any extensive monitoring campaigns.

The few relevant pollen monitoring publications for 
Ireland are decades old and provide little detail on 
the various pollen types recorded and their long-term 
trends (McDonald, 1980; McDonald and O’Driscoll, 
1980). Interestingly, relevant and extensive pollen data 
do exist for Ireland, mainly for Dublin city, but have yet 
to be fully explored in the scientific literature. However, 
a recent publication covering the spatial and temporal 
variations in the distribution of birch trees and airborne 
Betula pollen in Ireland highlighted the potential of 
using such historical data (Maya-Manzano et al., 
2021).

In addition, other recent Irish aerobiological research 
has focused on assessing the suitability of real-time 
methods such as the wideband integrated bioaerosol 
sensor (WIBS) in monitoring primary biological 
aerosol particles (PBAPs) such as fungal spores and 
pollen (Healy et al., 2012a,b, 2014; O’Connor et al., 
2013, 2014). Several field monitoring campaigns 
were conducted around Ireland using the WIBS, 
but the durations of the campaigns were relatively 
short, offering little information on the seasonal 
concentrations of and trends in PBAPs. Likewise, 
because of the inability of the WIBS to discriminate 
between pollen from a large range of species, the 
campaigns provided little detail on the prevalent 
pollen types. Overall, the understanding of allergenic 
bioaerosols in the historical Irish context is severely 
limited, with little known about the pollen species and 
their seasonality.

Given the lack of monitoring data, Irish pollen 
forecasts are provided by the University of Worcester 
and the Meteorological (Met) Office using pollen 
collections made in the UK. However, these might not 
be fully representative of the pollen concentrations 
experienced by the Irish public: according to one 
report, the pollen found in a specific location is 
representative only of an area of 30 km2 (Katelaris 
et al., 2004). This is not an acceptable long-term 
approach, as respiratory diseases and allergies 
present a significant health risk to the Irish public. In 
fact, Ireland has one of the highest hospital discharge 
and death rates associated with asthma in western 
Europe, with 60–80% of Irish asthmatics also suffering 
from allergic rhinitis (Asthma Society of Ireland, 2020). 
With allergy prevalence and pollen release expected 

to increase with climate change, establishing a fully 
operational pollen monitoring network will be crucial 
in tackling these concerns. The Pollen Monitoring 
and Modelling (POMMEL) project aims, in part, to 
address these limitations through the development of 
appropriate predictive models.

1.2	 Pollen Monitoring Methods

1.2.1	 Traditional volumetric methods

Considering that pollen monitoring has seen an 
appreciable rise in interest over recent decades, it is 
somewhat surprising that the vast majority (80%) of all 
documented sampling sites still use Hirst or Rotorod 
collection methods, which were originally developed 
as far back as the 1950s (Buters et al., 2018; Sodeau 
and O’Connor, 2016). Long-term datasets are 
available across much of Europe (although not Ireland) 
and represent a necessary starting point for pollen 
monitoring networks. After all, there are reasons why 
such equipment has been in operation for so long; the 
instruments are relatively inexpensive to purchase and 
operate and their robustness allows them to perform 
well in outdoor settings (Beggs et al., 2017).

The Hirst volumetric trap (Hirst, 1952) is the most 
commonly used sampler for pollen monitoring and 
is recommended as a sampling method by the 
EAN and the European Aerobiology Society (EAS) 
(Oteros et al., 2015). It operates on a continuous 
basis to determine airborne pollen (and fungal spore) 
concentrations by employing a pump to capture the 
aerosols on a suitable substrate, generally a tape. The 
substrate moves sequentially, producing hourly results. 
The substrate is then mounted using an appropriate 
colourant and quantitatively and qualitatively analysed 
manually using optical microscopy. However, this 
method is far from perfect. Several studies have 
highlighted problems such as notable differences 
being observed between Hirst samplers located 
in close proximity (Tormo Molina et al., 2013) and 
differences between the flow rates determined by 
different machines (Oteros et al., 2017). In addition, 
this off-line technique is notoriously time-consuming 
and requires highly skilled operators to visually 
identify pollen types correctly. The precision of results 
therefore relies heavily on the skill of the operator. 
As well as being labour intensive, this method is 
incredibly impracticable for near real-time monitoring, 
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and it can take up to a week to circulate the results. 
Furthermore, because the identification process 
is slow, only a sample of the slides are analysed 
and the overall count determined by extrapolation 
(Maya-Manzano et al., 2020). Therefore, the biggest 
problem that pollen monitoring networks face is the 
time delays between sampling, analysis and the 
dissemination of the results to the public and relevant 
bodies. As a result, new methods for the atmospheric 
sampling of bioaerosols have been the focus of recent 
aerobiological research.

1.2.2	 Real-time methods

Real-time methods may offer a suitable alternative to 
the impracticable traditional Hirst-type methods. The 
initial development of real-time methods for PBAP 
monitoring was largely motivated by the need to 
warn the public and national defence of the threats of 
airborne aerosols, including forecasting aeroallergens 
and acts of bioterrorism (Huffman et al., 2019). As 
a result, there is a range of techniques available 
for real-time monitoring. Most real-time bioaerosol 
methods currently in use exploit physical and/or 
chemical properties to detect and differentiate between 
bioaerosols and have been reviewed in depth in recent 
years (Fennelly et al., 2017; Huffman et al., 2019).

Although the incorporation of real-time instruments 
into bioaerosol monitoring networks offers the potential 
for rapid retrieval and subsequent dissemination 
of data, only two real-time monitoring networks 
are currently in operation in Europe: in Bavaria, 
Germany, currently using the BAA500 instrument that 
operates on the principle of image recognition (Oteros 
et al., 2015), and in Switzerland, which employs 
the Swisens Poleno air-flow cytometry system that 
uses optical discrimination based on fluorescence 
and light scattering (Crouzy et al., 2016; Sauvageat 
et al., 2020). In total, only four European countries 
(France, Germany, Luxembourg and Switzerland) use 
real-time monitoring instruments regularly, but not 
at all their sampling locations (Buters et al., 2018). 
This is mainly because of the high costs associated 
with real-time instruments. As European legislation 
on air quality does not yet cover bioaerosols, most 
monitoring stations/networks are not run by national 
governments, with only a handful of countries including 
Switzerland (MeteoSwiss) and France (Réseau 
National de Surveillance Aérobiologique; RNSA) 

possessing state-owned networks (Buters et al., 
2018). The real-time devices, such as the BAA500 and 
Swisens Poleno, therefore often exceed the budgets 
available to most monitoring networks, especially at 
this early stage in their development. Outside Europe, 
there are two sampling sites in the USA and 120 in 
Japan that exclusively employ real-time instruments 
for pollen monitoring (Buters et al., 2018). However, 
these sites tend to examine only a select few pollen 
taxa of specific interest (Kawashima et al., 2007), 
using variants of the Japanese counter. Hence, other 
alternative and cost-effective real-time techniques 
based on spectroscopic methodologies have been 
trialled and deployed during the POMMEL project, 
including the KH-3000-01 and WIBS instruments.

The KH-3000-01 Japanese Pollen Sensor, developed 
by Yamatronics, operates based on light scattering. 
An air sample is collected and irradiated with a 
laser that measures the forward and side scatter of 
particles, producing immediate results (Kawashima 
et al., 2007). Real-time monitoring is possible 
through the instantaneous processing of data. This 
approach has been used across Japan since 2002 
for pollen monitoring and forecasting. It has been 
used extensively for monitoring cedar pollen, the main 
cause of pollinosis, as part of the Japanese cedar 
pollen network (Kawashima et al., 2017). However, 
Japan has few other dominant allergenic species, 
and cedar pollen is easily separated from other pollen 
types because of its distinct large size and shape 
and characteristic winter-pollinating season (Huffman 
et al., 2019). Since the original development and use 
of the device in 2002, it has been applied to a range of 
pollen types including Urticaceae, Poaceae, Ambrosia 
(Kawashima et al., 2007), Cupressaceae, Fraxinus, 
Betula and Quercus. Discrimination between pollen 
taxa is made possible by comparing scattered light 
intensity and the degree of polarisation. Deploying this 
device in Ireland for pollen monitoring would represent 
one of few preliminary European studies. Although the 
discriminatory power of the KH-3000-01 for the in situ 
analysis of numerous pollen types remains uncertain, 
its low cost makes it an attractive option to test in a 
pilot real-time pollen monitoring network.

Instrumentation based on the use of fluorescence 
spectroscopy for biological particle detection has 
also been developed for the real-time analysis of 
bioaerosols. The WIBS is another example of one 
such method: it is a three-channel single aerosol 
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particle fluorescence monitor that operates using 
light-induced fluorescence to detect the fluorescent 
signature of atmospheric particles. The WIBS provides 
high-resolution information on the size, shape and 
fluorescence intensity of a particle using a dual 
wavelength optical detection chamber. Particles of 
interest are pumped into the instrument and irradiated 
with a 635-nm laser (Huffman et al., 2019). The 
subsequent light scatter is then used to estimate the 
size and shape of the particles of interest (Sodeau 
and O’Connor, 2016). The fluorescent properties of 
the particles are then investigated by setting the two 
xenon flash lamps to the excitation wavelengths of 
two common bio-fluorophores: tryptophan (280 nm) 
and NAD(P)H (370 nm). The resulting emission bands 
are then detected by two photomultiplier detectors, 
one at 310–400 nm and the other at 420–650 nm. This 
provides three separate measurements of detection: 
excitation at 280 nm with emission detected at 
(1) 310–400 nm and (2) 420–650 nm and (3) excitation 
at 370 nm with emission detected at 420–650 nm 
(Fennelly et al., 2017; Healy et al., 2012a; Huffman 
et al., 2019; Sodeau and O’Connor, 2016). Sampled 
particles can then be categorised according to their 
fluorescent properties. A series of laboratory and field 
investigations have been conducted to assess the 
performance of the WIBS for the real-time monitoring 
of PBAPs, including in Ireland (Healy et al. 2012a,b, 
2014; O’Connor et al., 2013, 2014). Field studies have 
highlighted the proficiency of the WIBS in identifying 
ambient bioaerosols when compared with traditional 
volumetric sampling methods (R2 > 0.9) (O’Connor 
et al., 2014). However, only a select few have 
specifically attempted to use the WIBS to monitor and 
differentiate between pollen types (Healy et al., 2012a; 
O’Connor et al., 2014). Laboratory studies using the 
WIBS-4 [now surpassed by the WIBS-NEO (WIBS – 
new electronics option)] illustrated the potential for 
the WIBS to discriminate pollen grains from other 
bioaerosols, such as fungal spores, and from other 
aerosols of non-biological origin (Healy et al., 2012a).

1.3	 Pollen Modelling and Forecasting 
Methods

There are three broad classes of modelling that have 
routinely been applied to predicting and forecasting 
ambient pollen concentrations, namely observation-
based, process-based and source-orientated models. 

A detailed review of these has been published (Maya-
Manzano et al., 2020).

1.3.1	 Observation-based models

Observational models refer to mathematical/statistical 
constructs that aim to describe and predict the 
behaviour of and trends in dependent variables using 
independent variables. In this case, the dependent 
variables are ambient pollen concentrations that can 
be predicted using independent variables, which 
could include meteorological and phenological 
parameters. However, since the independent variables 
(model inputs) are quite site specific, so too will be 
the predicted outcomes. As a result, these types of 
models are often location limited and can be difficult 
to extrapolate to other locations. To date, a wide range 
of observational model techniques have been applied 
to forecasting the day-to-day variations in airborne 
pollen concentrations, including traditional regression 
and time series approaches as well as more modern, 
machine learning approaches.

Regression analysis remains a popular approach 
in aerobiological studies, including in developing 
prediction models. The simplest is linear regression, 
which involves establishing a relationship between 
two variables (one dependent and one independent) 
using a straight line and remains a popular pollen 
forecasting method (Frenguelli et al., 2016; García-
Mozo et al., 2014; Piotrowska-Weryszko, 2013a). 
However, most dependent variables are rarely fully 
explained by modelling only one variable, and the 
complex release of pollen grains is no different. As a 
result, multiple and polynomial regression analyses 
have also received much attention (Jarlan et al., 2014; 
Novara et al., 2016; Sabariego et al., 2012; Tseng 
et al., 2018), including backwards elimination and 
stepwise multiple regression (Howard and Levetin, 
2014; Janati et al., 2017; Sicard et al., 2012), logistic 
regression (Katz and Batterman, 2019; Myszkowska, 
2014a; Myszkowska and Majewska, 2014) and partial 
least squares regression (Brighetti et al., 2014; Lara 
et al., 2019). Regression models have been used to 
model a variety of different pollen season parameters, 
including daily pollen concentrations (Janati et al., 
2017; Smith and Emberlin, 2005), season start/peak 
(García-Mozo et al., 2009; Myszkowska, 2014a,b; 
Zhang et al., 2015), season duration (Zhang et al., 
2015) and season intensity (Bonini et al., 2015), 
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for many different pollen types. Regression models 
have mainly been constructed for pollen taxa of 
known allergenic/invasive importance including Alnus 
(Myszkowska, 2014a; Novara et al., 2016), Betula 
(Robichaud and Comtois, 2017; Zhang et al., 2015), 
Corylus (Myszkowska, 2014a; Novara et al., 2016), 
Poaceae (de Weger et al., 2014; Janati et al., 2017; 
Piotrowska, 2012), Quercus (Myszkowska et al., 2011; 
Picornell et al., 2019), Cupressaceae (Picornell et al., 
2019; Sabariego et al., 2012), Artemisia (Piotrowska-
Weryszko, 2013b; Zhang et al., 2015), Ambrosia 
(Howard and Levetin, 2014; Zhang et al., 2015) and 
Urticaceae (Picornell et al., 2019).

However, despite their convenience and easy 
construction, regression models are generally based 
on assumptions of linearity and normality and often 
fail to account for the seasonality of aerobiological 
data, which can result in low model predictability 
(Astray et al., 2010; Damialis and Gioulekas, 2006). 
These time-dependent limitations can be accounted 
for using time series analysis. Time series forecasting 
involves predicting future values based on past values 
by considering a number of components such as 
general and seasonal trends, unknown cycles and 
random components (Maya-Manzano et al., 2020). 
Time series try to separate (decompose) different 
patterns with the goal of isolating all the disturbances 
in the time series dataset caused by ordinary seasonal 
behaviour such as weather parameters. Different 
time series approaches have been applied to pollen 
data, including ARIMA (autoregressive integrated 
moving average) models (García-Mozo et al., 2014) 
and locally weighted smoothing (LOESS)-based 
decompositions (Rojo et al., 2017). Again, this 
modelling approach has been used for years to 
predict concentrations of a variety of pollen types 
including Alnus (Nowosad, 2016; Siniscalco et al., 
2015), Ambrosia (Puc and Wolski, 2013), Artemisia 
(Puc and Wolski, 2013), Betula (Nowosad et al., 
2016), Corylus (Nowosad et al., 2016), Poaceae 
(Fernández-Rodríguez et al., 2018; Rojo et al., 
2017; Tassan-Mazzocco et al., 2015), Quercus 
(Fernández-Rodríguez et al., 2016) and Urticaceae 
(Tassan-Mazzocco et al., 2015; Valencia et al., 2019).

Although these traditional models remain popular, 
they often fail to truly depict the complex relationship 
between pollen concentrations and influencing 
parameters. This represents a major obstacle in 
modelling biological systems. As a result, more 

sophisticated machine learning techniques have 
become increasingly popular in atmospheric and 
aerobiological studies. Often they are designed to 
mimic biological information processing systems 
(Recknagel, 2001) and are used to try and simulate 
intricate systems in which the relationships between 
variables are difficult to explain (Scheifinger et al., 
2013). A number of machine learning techniques have 
been applied to pollen forecasting in recent years, 
including artificial neural networks (ANNs) (Astray 
et al., 2016; Burki et al., 2019; Liu et al., 2017; Puc, 
2012), support vector machines (SVMs) (Bogawski 
et al., 2019; Du et al., 2017; Liu et al., 2017) and 
ensemble techniques such as random forest (RF) 
(Navares and Aznarte, 2019; Zewdie et al., 2019a,b). 
ANNs have become particularly popular for pollen 
forecasting, owing to the ease with which they can 
analyse non-linear relationships and high-order 
interactions and their tolerance of discontinuous data 
(Jedryczka et al., 2015). However, these algorithms 
require a lot of training data to develop suitably 
accurate and robust models. ANNs have recently 
been applied to predicting Ambrosia (Csépe et al., 
2014, 2019), Betula (Puc, 2012), Quercus (González-
Naharro et al., 2019) and Olea (Iglesias-Otero et al., 
2015) pollen concentrations. SVMs have also been 
used to forecast daily concentrations and flowering 
periods (Bogawski et al., 2019; Zewdie et al., 2019c; 
Zhao et al., 2018) but are often outperformed by 
ANN and RF. The latter is another popular machine 
learning method for pollen prediction but, unlike 
the others, involves the construction of a series of 
decision trees. RF models have been developed for a 
range of different pollen types, such as Alnus, Betula, 
Corylus (Nowosad et al., 2016) and Poaceae (Navares 
and Aznarte, 2019). Although these sophisticated 
approaches have not been covered to the same 
extent as more traditional deterministic models in the 
literature, their high accuracy and robustness make 
them a promising solution.

1.3.2	 Process-based models

Phenology refers to the study of recurring seasonal 
events that are influenced by meteorological factors. 
Phenological data have been shown to complement 
aerobiological studies and have been used regularly 
to develop efficient models for predicting key phases 
in plant development, notably flowering periods 
for pollen forecasting (Grundström et al., 2019; 
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Tormo et al., 2011). These process-based models 
determine the dates of phenological phases in 
relation to environmental factors and are often used 
in atmospheric transport models (Maya-Manzano 
et al., 2020). To date, phenological models have been 
developed for Alnus (Pauling et al., 2014; Siniscalco 
et al., 2015), Betula (Pauling et al., 2014), Corylus 
(Novara et al., 2016; Pauling et al., 2014), Olea 
(Achmakh et al., 2015) and Poaceae (Pauling et al., 
2014) pollen.

Along with more complex numerical models, other, 
simpler, tools can also be developed for pollen 
forecasting. Despite the advantages of previously 
discussed modelling techniques, they require a great 
deal of site-specific data, including large datasets 
for model calibration, and access to additional data, 
such as meteorological data, and also need to meet 
any essential computational requirements. These 
requirements cannot be met at every sampling 
site. In such cases, a pollen calendar may offer a 
suitable alternative method. A pollen calendar is 
the most rudimentary form of pollen forecasting 
tool and graphically represents the average annual/
seasonal trends in major pollen types, typically 
those of allergenic concern, for a particular location 
(Pecero-Casimiro et al., 2020). Since pollen emission 
is directly dependent on plant phenology and 
seasonality (Dahl et al., 2013), a pollen calendar 
essentially represents the simplest process-based/
observation-orientated prediction tool for any given 
area (Sofiev and Bergmann, 2013). Pollen calendars 
have been used for decades and have been shown 
to be very helpful for understanding the distribution 
and concentration of various pollen taxa at different 
locations (Elvira-Rendueles et al., 2019; Emberlin 
et al., 1990; Katotomichelakis et al., 2015; Lo et al., 
2019; Martínez-Bracero et al., 2015; O’Rourke, 1990; 
Pecero-Casimiro et al., 2020; Šikoparija et al., 2018; 
Werchan et al., 2018). The temporal resolution of 
these models tends to be in the order of several days, 
which does limit their use with regard to daily forecasts 
(Šikoparija et al., 2018). In the case of accurate daily 
forecasts, statistically based model approaches are 
more accurate (if resources are available).

1.3.3	 Source-orientated models

Source-orientated and transport models can be used 
to predict the spatiotemporal distribution of pollen 

concentrations (Verstraeten et al., 2019). Transport 
models can overcome the heavy data requirements 
of previously discussed observational techniques 
but do require an understanding of certain aerosol 
characteristics such as diffusion. Another important 
criterion to consider is pollen emission sources, the 
inclusion of which has been shown to improve model 
performance. These models are based on chemistry 
transport models that have later been adapted to 
account for the dispersal of bioaerosols, firstly with 
pollen. Several transport models that are capable of 
simulating pollen dispersion include SILAM (Siljamo 
et al., 2013; Verstraeten et al., 2019), COSMO-
ART (Vogel et al., 2009; Zink et al., 2012, 2017), 
ENVIRO-HIRLAM (Mahura et al., 2009), CMAQ-pollen 
(Efstathiou et al., 2011) and the WRF-CHEM model 
(Skjøth et al., 2015). Recent studies have investigated 
the dispersion of several different pollen types, 
including Alnus (Prank et al., 2016), Ambrosia (Prank 
et al., 2013; Zink et al., 2012), Artemisia (Prank et al., 
2016), Betula (Sofiev et al., 2015; Zhang et al., 2014), 
Poaceae (Sofiev et al., 2017) and Quercus (Zhang 
et al., 2014).

1.4	 POMMEL Objectives and 
Outputs

1.4.1	 Objectives

●● To develop a comprehensive systematic review 
of the potential model/forecast options used by 
European countries, extracting the data required 
to implement such models. This review will also 
focus on the state-of-the-art methods for pollen 
identification and quantification.

●● To analyse historical unpublished pollen data from 
the 1970s.

●● To establish and maintain the only pollen 
monitoring network in Ireland (via traditional 
methods) for the duration of the study, thus 
recording seasonal ambient concentrations of 
pollen for each sampling site.

●● To enhance the traditional network via the use of 
novel spectroscopic instrumentation, including 
the WIBS-4+ (as described in the OLBAS project; 
Sodeau et al., 2029) and the Japanese pollen 
monitor, to ascertain their potential as real-time 
monitors.

●● To develop an Irish pollen forecasting tool that will 
combine Ireland-specific pollen data directly with 
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meteorological and phenological data, and thus 
predict future ambient pollen concentrations.

●● To provide recommendations pertaining to the 
efficiency and future spatial and temporal direction 
of the model developed.

These objectives, as set in the original research 
proposal, were achieved as described in 
Chapters 2–6.

1.4.2	 Outputs

Peer reviewed manuscripts:

1.	 Maya-Manzano, J.M., Skjøth, C.A., Smith, M., 
Dowding, P., Sarda-Estève, R., Baisnée, D., 
McGillicuddy, E., Sewell, G. and O’Connor, D.J., 
2021. Spatial and temporal variations in the 
distribution of birch trees and airborne Betula 
pollen in Ireland. Agricultural and Forest 
Meteorology 298: 108298.

2.	 Maya-Manzano, J.M., Smith, M., Markey, E., 
Hourihane Clancy, J., Sodeau, J. and 
O’Connor, D.J., 2021. Recent developments 
in monitoring and modelling airborne pollen, 
a review. Grana 60(1): 1–19.

Presentations:

1.	 Oral presentation at the 37th AAAR Annual 
Conference, 14–18 October 2019 at the Oregon 
Convention Center in Portland, Oregon.

2.	 Oral presentation at the 11th International 
Congress on Aerobiology, 3–7 September 2018 in 
Parma, Italy.

3.	 Poster presentation at the 7th European 
Aerobiology Society Symposium, 
17–20 November 2020 in Cordoba, Spain.
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2	 Traditional Pollen Monitoring

The ambient pollen concentrations at several 
locations over Ireland were monitored using traditional 
volumetric microscopy methods during the entirety 
of the POMMEL project. Traditional monitoring 
was carried out to identify the prevalent ambient 
pollen types and seasonal pollen trends present in 
Ireland. Pollen data from the Dublin and Carlow sites 
(Figure 2.1) were monitored continuously from 2018.

2.1	 Overview of Prevalent Pollen 
Types and Trends

Over the course of the 2018–2019 seasons, over 
60 different pollen types were identified: 31 of those 
identified were herbaceous/grass in nature with 
another 30 originating from trees. The prevalent pollen 
types were slightly different in the two locations as 
shown in Figure 2.2.

The dominant pollen types identified in Dublin were 
Poaceae (grass), Urticaceae (nettle), Cupressaceae 

and Taxaceae (cypresses and yews), Betula (birch), 
Quercus (oak), Pinus (pine), Fraxinus (ash), Alnus 
(alder) and Platanus (plane), which accounted for 93% 
of the total pollen sampled. The most abundant pollen 
types identified in Carlow were Poaceae, Urticaceae, 
Betula, Quercus, Fraxinus and Pinus, which accounted 
for 91% of the total pollen sampled.

Overall, the pollen season in Ireland was found to be 
bimodal, as illustrated in Figures 2.3 and 2.4. The first 
peak period, from April to May, was mainly attributed 
to high concentrations of tree pollen, most notably 
Betula pollen, and the second peak period, seen 
in the summer months (June–July), resulted from 
higher concentrations of Poaceae pollen. This peak 
in summertime Poaceae pollen concentrations was 
also seen in early studies carried out in Galway city 
(McDonald, 1980; McDonald and O’Driscoll, 1980). 
These characteristic pollen types are of particular 
concern, as they are two of the most allergenic pollen 
types present in Ireland. As a result, the determination 

Figure 2.1. Pollen sampling locations at Dublin and Carlow.
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of seasonal trends in Betula and Poaceae pollen types 
and their relationship with meteorological parameters 
would be vital in establishing a functional allergenic 
pollen forecasting system.

Notable differences can be seen in the main pollen 
seasons (MPSs) of different allergenic pollen types 
between the two years and locations, as shown in 
Tables 2.1 and 2.2. The MPS is considered to start 
when the pollen concentration reaches 5% of the 
total annual concentration and to end when it reaches 
95% of the total annual concentration (Cristofori et al., 
2010; Nilsson and Persson, 1981). The major pollen 
types were defined as the pollen types with an annual 
pollen integral (APIn) ≥ 100 pollen × day/m3 (Galán 
et al., 2017), expressed as the average daily pollen 
concentration per m3 of air. 

To summarise, annual pollen concentrations were 
higher in 2019 than 2018. In addition, MPS start dates 
and durations also changed between the two years. 
A range of factors can influence the concentration of 
pollen release in one MPS (Galán et al., 1995). The 
main reason for the differences in pollen concentration 
and season duration between the two years is the 
difference in meteorological conditions. During 2018, 
the east of Ireland experienced unseasonably cold 
weather during February and March, which led to a 
reduction in ambient tree pollen concentrations during 
March of 2018 and delayed the onset of pollen release 
from grass. Similar decreases in soil temperature 
in early spring have been shown in other studies to 
result in an increase in grass pollen concentrations 
during the following summer (Emberlin et al., 1999). 

Figure 2.2. Prevalent pollen types in Dublin and Carlow.

Figure 2.3. Daily total pollen concentrations – Dublin.
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Other factors, such as mast years (i.e. the fluctuating 
and harmonised production of seeds and/or pollen 
by a cohort of plants), should also be considered. In 
addition, several tree species, such as Fraxinus, have 
been known to exhibit naturally occurring periods of 

significantly reduced pollen production every couple of 
years (Gassner et al., 2019).

Although the prevalent pollen types/season varied 
slightly by location and year, the Irish pollen season 
generally begins with the release of tree pollen in 

Figure 2.4. Daily total pollen concentrations – Carlow.

Table 2.2. Main pollen season characteristics – Carlow

Year Pollen type Start date End date
Duration of 
season (days)

Maximum daily concentration 
(grains/m3)

Day of maximum 
concentration

2018 Betula 23/04/2018 05/06/2018 43 124.8 04/05/2018

Poaceae 04/06/2018 04/07/2018 30 4658.55 13/06/2018

2019 Alnus 07/02/2019 16/03/2019 51 222.3 22/02/2019

Betula 08/04/2019 01/05/2019 27 1384.5 22/04/2019

Poaceae 08/06/2019 03/07/2019 25 19,203.6 20/06/2019

Table 2.1. Main pollen season characteristics – Dublin

Year Pollen type Start date End date
Duration of 
season (days)

Maximum daily concentration 
(grains/m3)

Day of maximum 
concentration

2018 Alnus 03/02/2018 31/03/2018 56 16.9 12/02/2018

Betula 06/04/2018 25/04/2018 19 345.8 11/04/2018

Corylus 14/01/2018 02/04/2018 78 16.9 16/02/2018

Poaceae 20/05/2018 05/07/2018 46 410.15 17/06/2018

2019 Alnus 27/01/2019 02/03/2019 34 167.7 15/02/2018

Betula 28/03/2019 11/05/2019 44 553.15 18/04/2018

Corylus 21/01/2019 02/03/2019 20 11.7 15/02/2019

22/02/2019

Poaceae 07/06/2019 01/08/2019 55 1056.9 15/06/2019
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January/February and ends with the release of grass/
herb pollen in October.

2.2	 Differences between Urban and 
Rural Sampling Locations

Although the progression of the pollen seasons in 
Dublin and Carlow is similar, several differences 
between the urban and rural sites were also noted. 
During the sampling period in both years, Carlow 
experienced substantially higher ambient pollen 
concentrations than Dublin: the mean APIn for Dublin 
was 34,217 pollen × day/m3, whereas the mean APIn 
for Carlow was 78,389 pollen × day/m3. This difference 
in pollen concentration between the two sites is mainly 
the result of significant Poaceae concentrations 
released over Carlow during the month of June. 
Comparable concentrations are not seen in Dublin. 
This was not unexpected, as the Carlow sampling 
equipment was sited on a platform 2 metres above 
the ground in an area of rural grassland, whereas in 

Dublin the sampling equipment was located on the 
rooftop of a five-storey building (20 metres high). For 
the remainder of the year, pollen concentrations did 
not differ as significantly between the two sites.

Although Dublin experienced relatively lower pollen 
concentrations than Carlow, there were 36 additional 
pollen types identified in Dublin that were not 
present in Carlow, many of which are classified as 
“ornamental”. This is not uncommon, as many other 
studies have highlighted the increased presence 
of ornamental plant and tree species in urban 
environments that would not be present in more rural 
settings (Velasco-Jiménez et al., 2020). The Carlow 
site offers an interesting indication of source strength 
from agricultural grassland, and determining this 
source strength will be of interest should dispersion 
modelling be used in the future. While such a site may 
overestimate the concentration of grass pollen at peak 
season it still offers phenological and pollen emission 
information.
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3	 WIBS Real-time Monitoring Campaign

3.1	 Campaign Overview

Pollen (and fungal spore) monitoring was conducted 
at the sampling site at the Technological University 
Dublin, Kevin Street. During this campaign, traditional 
methods of PBAP monitoring (Hirst volumetric traps) 
were compared with newer spectrometric methods 
such as the WIBS-NEO to assess their real-time 
monitoring potential. The monitoring campaign took 
place over the course of 41 days from 7 August to 
16 September 2019. The spectrometric instrument 
(WIBS-NEO) was positioned on the roof of TU Dublin, 
Kevin Street, in appropriate proximity to the Hirst–
Lanzoni volumetric trap, to permit parallel monitoring.

3.2	 Pollen Monitoring Data

During the investigation, more than 13 different pollen 
taxa were identified by microscopic analysis of the 
PBAPs sampled by the Hirst–Lanzoni trap. The total 
number of pollen grains measured over the entire 
campaign was 4859 grains/m3, with an hourly average 
of 5 grains/m3 sampled.

The most dominant pollen types and their percentage 
contribution are illustrated in Figure 3.1.

Of the pollen types identified, Poaceae (grass pollen) 
and Urticaceae (nettle pollen) pollen were by far the 
most abundant, representing a combined 89% of the 
total pollen count for the sampling period. Urticaceae 

alone represented 78% of the total pollen count, with a 
total count of 3783 grains/m3. In comparison, Poaceae 
contributed a much lower 19% of the total count, with a 
total of 537 grains/m3; this low value seen for Poaceae 
pollen is because it was the end of the Poaceae pollen 
season. The highest daily pollen concentration was 
recorded on 26 August and was due to the presence of 
high ambient Urticaceae concentrations (Figure 3.2). 
Thereafter, there was a general downwards trend in 
pollen concentration, coinciding with the ending of the 
pollen season.

3.3	 WIBS Monitoring Data

For particle size/shape determination, the WIBS-
NEO uses an approach based on the construction 
of a calibration curve. This curve was produced by 
nebulising particles of known size and shape into 
the WIBS instrument. In this case, a number of 
polystyrene latex (PSL) spheres with a range of sizes 
were aerosolised into the WIBS. These data act as 
the basis for all subsequent sample data. Particles 
are struck by a 635-nm diode laser beam and their 
elastic scattering intensities are sampled in the forward 
and side (90 degree) directions. The software then 
uses the Mie theory, which assumes that the particles 
are spherical and of a specific refractive index, to 
designate a size and shape parameter to each particle. 
The particles are subsequently evaluated for their 

Figure 3.1. Distribution of pollen types during the campaign.
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fluorescent characteristics. A full explanation of the 
WIBS instrument can be found in Healy et al. (2012b).

Fluorescent particle monitoring was carried out using 
the WIBS-NEO. Over the course of the campaign (from 
12:00 on 7 August 2019 to 12:00 on 16 September 
2019) a total of 56,818,969 particles were recorded. 
Fluorescent aerosol particles (FAPs) were determined 
by applying a force trigger threshold (baseline). The 
baseline was set as three standard deviations greater 
than the mean fluorescence intensity in each channel 
(3δ) during the absence of particles, which is a 
measured forced trigger threshold. Of all the particles 
sampled, only 11.2% possessed fluorescent intensities 
exceeding the forced trigger threshold. The filtered 
FAPs were then subdivided into seven classes based 
on their fluorescent characteristics in the three detector 
channels (FL1, FL2 and FL3), as shown in Table 3.1.

The percentage contribution of WIBS particle types to 
total FAPs is shown in Figure 3.3. 

B-type particles accounted for over 43% of the FAPs 
recorded. Interestingly, no previous studies have 
associated B-type particles with biogenic activity, and 
they are likely to have resulted from anthropogenic 
sources. This is not unexpected considering the urban 
location of the sampling site in Dublin city centre. The 
WIBS particle types with the next highest contributions 
were BC (15%) and ABC (14%), both of which have 
been associated with the presence of airborne PBAPs.

Figure 3.4 shows the daily variation in FAP classes 
during the monitoring campaign.

In addition to fluorescence intensity, the WIBS-NEO 
also provides information on the size and shape of the 
particles sampled. An asymmetry factor (AF) is used 
to describe the relative shape of particles, providing 
a numerical value between 0 and 100. The closer the 
value is to zero, the more spherical the particle is, 
with particles closer to 100 exhibiting a rod-like shape. 
The size and AF distribution of the fluorescent WIBS 

Figure 3.2. Time series of pollen counts over the campaign. 

Table 3.1. WIBS particle types

Channel Excitation (nm) Emission (nm)

A 280 310–400

B 280 420–650

C 370 420–650

AB 280 310–400

420–650

AC 280 310–400

370 420–650

BC 280 420–650

370

ABC 280 310–400

420–650

370 420–650
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particles can aid in the possible identification of the 
contributing PBAPs (Figure 3.5). 

Most particle types were dominated by particles of 
less than 10–15 μm, except for ABC particles, which 
were seen to peak at larger size ranges and lower 
AF values. These values indicate the presence of 
larger spherical particles that could be accounted 
for as pollen grains, especially considering the 
high fluorescence intensity. However, this expected 
relationship was not seen when the WIBS particle 
counts were compared with the pollen counts recorded 
by the Hirst microscope method.

3.4	 Comparison of Hirst–Lanzoni 
Trap and WIBS Data

The real-time monitoring potential of the WIBS was 
evaluated by comparing its ability to distinguish 
between the PBAPs of pollen and fungal spores and 
other interfering particles (anthropogenic particles, 
etc.). Pollen and fungal spore counts were determined 
by microscopic analysis of Hirst sample slides. Total 
daily pollen counts were shown to correlate most 
strongly with BC particles greater than 10 µm in 
size at a higher threshold of 6δ yielding a Pearson 

Figure 3.3. WIBS particle distribution during the campaign (δ = 3). 

Figure 3.4. Daily relative concentrations of WIBS particle fractions.
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correlation coefficient (r) of 0.78 and R2 of 0.6, shown 
in Figure 3.6. The same relationship with BC-type 
particles was also witnessed for Urticaceae pollen, 
with a slightly higher Pearson correlation coefficient 
(R2 = 0.64).

By examining size ranges greater than 10 μm, the 
effects of smaller PBAPs, such as fungal spores, were 

filtered out. This enabled the prospective sampling 
of bigger PBAPs, namely pollen. The Urticaceae 
produce a relatively small pollen grain, generally 
between 12 μm and 15 μm. However, owing to the light 
scattering method used to size the particles sampled 
by the WIBS, particle size values can vary depending 
on deviations in light scatter. This could explain the 
higher correlation observed for Urticaceae and BC 

Figure 3.5. Size vs AF distribution for the different WIBS fluorescent categories.
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Figure 3.6. (A) Time series of daily pollen (Hirst–Lanzoni trap) and BC particle (WIBS) counts, (B) linear 
regression for daily BC particle (WIBS) and daily total pollen counts (Hirst–Lanzoni trap) and (C) linear 
regression for daily BC particle (WIBS) and Urticaceae pollen counts (Hirst–Lanzoni trap) for the 2019 
monitoring campaign.
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particles between 10 μm and 20 μm; however, this 
size range could also include potentially interfering 
concentrations of larger fungal spores. As indicated 
by the above plot, the isolated BC particles followed 
the trends recorded for both total and Urticaceae 
pollen concentrations well for most of the monitoring 
campaign. This is particularly true for peak pollen 
concentrations recorded on 25 August. Although a 
clear relationship exists between the two instruments, 
there are times when a high Urticaceae pollen 
concentration was not observed by the WIBS-NEO, 
for example the unknown BC peak recorded on 
20 August. This peak illustrates the potential limitations 
of using the WIBS for the selective detection of specific 
pollen taxa. Although the isolated BC particles do 
closely follow the trend in observed pollen, there are 
unexplained deviations, which may be other biological 
particles or highly fluorescent interferents that cannot 
be successfully accounted for.

Although a good correlation was observed between 
the WIBS and the Hirst for both total and Urticaceae 
pollen, the same cannot be said for Poaceae pollen. 
During the analysis, no substantial relationship was 
observed for Poaceae pollen at any fluorescent 
threshold. The best correlation for Poaceae pollen was 
observed for WIBS BC particles greater than 8 µm at 
3σ (r = 0.53 and R2 = 0.30).

Examination of the time series compared in Figure 3.7 
showed that this isolated fraction of BC particles 
greater than 8 µm at 3σ failed to account for the 

predominant peak in Poaceae pollen on 15 August 
and accounted only for the peaks in Poaceae pollen 
that occurred on days with a high Urticaceae pollen 
concentration. As a result, the relationship between BC 
particle and Poaceae pollen concentrations is more 
representative of the correlation between Poaceae 
and Urticaceae pollen than the correlation between the 
WIBS particles and Poaceae pollen concentrations. 
The poor representation observed for Poaceae pollen 
is due to the relatively low concentrations observed 
during the sampling period and the difficulties 
encountered by the WIBS when sampling larger 
particles (O’Connor et al., 2014).

Making comparisons between the Hirst and WIBS-
NEO instruments is not faultless, since the systems 
use vastly different operating principles. The WIBS-
NEO operates at a considerably higher resolution 
than the Hirst and has a much higher capability for 
sampling smaller particles. The WIBS-NEO can 
record particles as small as 0.5 μm, making it suitable 
for monitoring bacteria and other small PBAPs. The 
Hirst trap is more limited because it uses microscopic 
analysis and, therefore, is less efficient than the 
WIBS-NEO at monitoring PBAPs less than 2 μm 
in size. As a result, for most of the campaign, the 
number of FAPs sampled by the WIBS-NEO was 
higher than the number of pollen grains sampled 
by the Hirst trap. Furthermore, the Hirst operates 
at a flow rate of 10 L/min, whereas the WIBS-NEO 
operates at a significantly lower flow rate of 0.3 L/min. 
This makes the Hirst trap more efficient at sampling 

Figure 3.7. Time series of daily Poaceae (Hirst–Lanzoni trap) and BC particle (WIBS) counts at 3σ for the 
2019 monitoring campaign.
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larger (potentially faster moving) particles that are 
unaffected by the lower flow rate of the WIBS-NEO. 
Meteorological conditions, such as high wind speeds, 
could also inhibit the ability of the WIBS-NEO to 
successfully sample pollen (O’Connor et al., 2014). 
This could explain why certain pollen peak periods 
were not recorded by the WIBS-NEO. Therefore, to 
selectively monitor pollen routinely using the WIBS-
NEO, modifications would be necessary to ensure the 
effective and representative sampling of a range of 
pollen sizes.

Similar real-time monitoring campaigns have 
previously been carried out in Ireland using the WIBS 
instrumentations (WIBS-4), but for a shorter period 
and not in such a diverse urban environment. Previous 
proof-of-principle studies have shown the capability 
of the WIBS to monitor selected pollen species in less 
diverse Irish environments (O’Connor et al., 2014). 
Studies have concluded, however, that the introduction 
of other PBAP types, such as additional pollen taxa 
and fungal spores, could further complicate the 
selective monitoring ability of the WIBS. This would be 
especially true for late summer/autumn months when 
fungal spore concentrations are usually high. The 
presence of such fungal spores probably affected the 
correlation of FAPs to pollen count.

Difficulties could have also arisen because of 
the urban sampling site. PBAPs are not the 
only fluorescent particles present in the ambient 
environment. A range of other material/particle types, 
such as polycyclic aromatic hydrocarbons (PAHs), 
humic-like substances, mineral dust, secondary 
organic aerosols and black carbon, may also 
contribute to the fluorescence (Savage et al., 2017; 
Yu et al., 2016). Owing to the urban location of the 
sampling site, interfering non-biological compounds 
were anticipated. To reduce the overall degree of 
interference experienced, the fluorescence threshold 
was raised from 3δ to 6δ and 9δ; this has been 
shown to reduce the impact of interfering particles 
while maintaining the supposed biological fraction of 
fluorescent particles (Savage et al., 2017). Even so, 
this method is not suitable for sampling PBAPs in the 
presence of highly fluorescent non-biological particles, 
as PBAPs would be subsequently categorised 
as non-fluorescent at higher δ values. One such 
highly fluorescent particle that is pervasive in urban 
environments is diesel soot. These particles have also 

been known to adhere to the surface of PBAPs, such 
as pollen, which could also have an impact on size, 
AF and fluorescent characteristics (Visez et al., 2020). 
These particles could also adhere to larger, otherwise 
non-fluorescent, particles, which could further affect 
the estimated pollen count (O’Connor et al., 2014). 
A series of other effects could also lead to changes 
in characteristic pollen shape/size and fluorescence 
in polluted urban environments, such as fluorescent 
ageing, adsorption/absorption of anthropogenic 
pollution and increased concentrations of chemicals 
that may provide protection against pollen degradation. 
The further study of these will be essential to improve 
the interpretation of measurements of fluorescent 
particles in such environments.

Previous studies have suggested adding extra 
detection channels between 600 nm and 750 nm to 
the WIBS in an attempt to visualise chlorophyll. The 
presence of chlorophyll has been shown to correlate 
well with certain pollen grains, notably Poaceae and 
Urticaceae pollen (Sodeau et al., 2019). Inclusion of 
these additional channels could have led to further 
differentiation by the WIBS of FAPs from pollen 
concentrations, as Poaceae and Urticaceae together 
account for the vast majority of pollen encountered 
during the monitoring period. Similarly, more complex 
data analysis and clustering analysis could further 
aid in identifying which FAP fractions correspond to 
different PBAP types. Although k-means clustering of 
WIBS particles was performed, no further improvement 
in the correlation with pollen was observed. Other 
clustering techniques have been shown to improve 
real-time particle discrimination between PBAP particle 
types and other anthropogenic particle types (Crawford 
et al., 2015; Robinson et al., 2013; Ruske et al., 2018; 
Savage and Huffman, 2018). However, these methods 
require considerable computational power.

Overall, the WIBS-NEO has been shown to be capable 
of providing increased sensitivity and time resolution 
for the monitoring of PBAPs when compared with 
traditional volumetric methods. The smaller particle 
size ranges measured by the WIBS-NEO also make 
it suitable for monitoring smaller PBAPs that cannot 
be measured with the Hirst trap, such as bacteria. 
However, improved filtering procedures and accessible 
data mining techniques are required for the routine use 
of such data-intensive methods. Traditional methods 
are both labour intensive and time-consuming, and 
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generally require a trained analyst to successfully 
and correctly identify PBAP taxa. The real-time data 
collection of instrumentation such as the WIBS has the 
potential to drastically reduce the time such monitoring 
efforts take, enabling the rapid dissemination of results 
to the public and relevant bodies. However, this is 
ultimately dependent on suitable statistical clustering 
techniques and machine learning algorithms to provide 
accurate and timely identifications from such large 
quantities of data. This is especially true for complex 
environments, such as urban and polluted locations, 
that contain significant concentrations of other 
interfering compounds.

3.5	 Suitability for Monitoring Other 
PBAPs

The suitability of the WIBS for monitoring other PBAPs 
of interest was also investigated for fungal spores. 
The WIBS has previously been shown in the literature 
to be capable of monitoring fungal spores in real 
time (O’Connor et al., 2011, 2014, 2015). During the 
monitoring campaign, fungal spores were also counted 
and identified using Hirst trap data. These data were 
later compared with analysed WIBS particle data. 
Promising results were obtained for both total fungal 
spore count (Pearson correlation coefficient of 0.6) and 
Alternaria spore counts (Pearson correlation coefficient 
of 0.75), as illustrated in Figures 3.8 and 3.9.

Figure 3.8. Time series of daily fungal spore count (Hirst trap) and daily BC particle count at 9σ (WIBS) 
for the 2019 monitoring campaign.

Figure 3.9. Time series of daily Alternaria spore count (Hirst trap) and daily BC > 8 µm particle count at 6σ 
(WIBS) for the 2019 monitoring campaign.
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4	 Japanese Pollen Counter Monitoring Campaign

4.1	 Campaign Overview

The KH-3000-01 pollen counter represents a 
possible alternative, cost-effective, real-time pollen 
monitoring technique (at relatively low cost). This 
monitor measures the forward and side scatter of 
incident particles using a laser. By analysing known 
pollen samples, suitable extraction windows can be 
calculated for individual pollen taxa. An extraction 
window simply defines the range of values indicative 
of the forward and side scatter produced for each 
pollen type. Since different pollen taxa have a range 
of sizes and surface features, these limits can be used 
to differentiate between them. Extraction windows for 
common allergenic ambient pollen types using the 
same instrumentation are published in the literature. 
These extraction window parameters were applied 
to ambient data collected in Dublin city from 1 May 
2019 to 10 July 2019. The KH-3000-01 instrument 
was positioned on the roof of TU Dublin, Kevin Street, 
close to the Hirst–Lanzoni volumetric trap, to permit 
parallel monitoring. Following the extraction of pollen-
type particles defined by the predetermined extraction 
windows, a comparison was made with the observed 
pollen concentrations obtained using the traditional 
volumetric method.

4.2	 Determination of Extraction 
Window – Literature

Extraction window limits were defined by Kawashima 
et al. (2017) in a similar study. Following collection 
of ambient data, a scatterplot of forward scattering 
intensity versus sideward scattering intensity was 
constructed. Following this, suitable ranges of forward 
and side scatter were determined for the different 
pollen taxa investigated. The location and size of the 
extraction windows were determined by trial and error 
but were further refined by comparison with observed 
concentrations obtained from a Hirst sampler. The 
correlation between the daily values obtained using 
the two methods measured by the Pearson product–
moment correlation coefficient, was used to optimise 
the exact location and size of extraction window for 
each pollen type examined (Kawashima et al., 2017). 

Determined extraction windows are summarised in 
Table 4.1.

4.3	 Comparison of KH-3000-01 and 
Hirst Sampler Data

During the sampling period, Poaceae pollen was the 
most prevalent pollen type, accounting for almost 
50% of the total pollen samples. Owing to the limited 
ambient concentrations of Cupressaceae, Fraxinus, 
Betula and Quercus pollen observed during the 
campaign, only extracted Poaceae and total pollen 
concentrations were compared with observed 
concentrations.

Total pollen and Poaceae concentrations detected 
by the KH-3000-01 counter were characterised as 
any point within the predefined extraction windows. 
To account for the differences in collection efficiency 
between the instruments and convert the pollen 
monitor count to the standard units of pollen grains 
per cubic metre (the same units used for Hirst 
observations), a collection factor was applied to the 
KH-3000-01 data. We used the collection factors 
provided by Kawashima et al. (2017), which were 
calculated as the ratio of the sum of daily pollen 
concentrations obtained from the Hirst sampler to 
the sum of the daily pollen counts obtained from the 
KH-3000-01 instrument. The collection factor was 
calculated as 5.8 for total pollen and 20.4 for Poaceae 
pollen (see Figures 4.1 and 4.2).

Table 4.1. Extraction windows and collection 
factors for the major types of allergenic pollen

Subject pollen

Range of extraction window

Sideward (mV) Forward (mV)

Cupressaceae 250–500 400–750

Fraxinus 570–950 270–480

Betula 1000–1500 900–1300

Quercus 500–760 500–850

Poaceae 670–900 870–2200

Total pollen 300–900 300–2000

Source: Kawashima et al. (2017).
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Pearson correlation coefficients were determined 
to compare the performance of the instruments in 
monitoring both total (r = 0.47) and Poaceae (r = 0.54) 
pollen concentrations. The correlation was better 
for the specific extraction of allergenic pollen types 
(Poaceae) than for total pollen. Similar trends were 
also observed in the original study performed by 
Kawashima et al. (2017).

Discrepancies between the two methods are most 
notable for several days at the end of the monitoring 

periods, when high pollen concentrations were 
recorded by the Hirst instrument but not by the 
KH-3000-01. A high peak of Poaceae pollen was also 
recorded by the KH-3000-01 instrument on 12 May 
2019 but not by the Hirst method. Differences between 
the pollen monitoring efficiency of the instruments are 
likely because:

●● The principles on which the instruments operate 
are very different, as was the case with the WIBS 
and the Hirst instrument. As a result, a degree 

Figure 4.1. Comparison of total pollen concentrations detected by the Hirst and KH-3000-01 instruments 
during the 2019 monitoring campaign.

Figure 4.2. Comparison of Poaceae pollen concentrations detected by the Hirst and KH-3000-01 
instruments during the 2019 monitoring campaign.
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of uncertainty is introduced by comparing two 
dissimilar methods. 

●● Differences in instrument flow rate, sample inlet 
orientation and the fluctuations in sampling 
efficiency associated with wind speed and 
direction were probably not fully compensated 
for using the collection factors obtained from the 
literature. 

●● Interfering particles of similar size and other 
similar-sized pollen grains, incorrectly grouped by 
the extraction windows, could have accounted for 
the high pollen signal seen on 12 May 2019.

Although the KH-3000-01 instrument has been shown 
to perform exceptionally well for very large and smooth 
pollen grains, such as Japanese cedar pollen, the 
device does not appear to perform as well for other 
pollen types of varying shape and sizes (Kawashima 
et al., 2007, 2017; Matsuda and Kawashima, 2018). 
The extraction window limits and the collection factors 
used for this investigation, determined by Kawashima 
et al. (2017), differed significantly from those used 
in later studies (Matsuda and Kawashima, 2018). 

This further highlights the need for location-specific 
suitable extraction windows and collection factors for 
pollen species, which could improve results. However, 
the determination of such parameters could be very 
time-consuming if the original “trial and error” method 
is to be followed. Nevertheless, efforts are currently 
ongoing to develop suitable data analysis procedures 
to enable improved differentiation between pollen 
taxa using the KH-3000-01 instrument (Miki and 
Kawashima, 2021).

Although the KH-3000-01 device provides a robust 
and cost-effective approach for developing a real-time 
pollen monitoring network, several factors need to be 
addressed before it can be truly considered fit for the 
purpose of real-time pollen monitoring. These include 
improving data analysis, storage and calibration 
techniques and developing an official external 
instrument housing. Combining these considerations 
with the current lag time in data dissemination, 
because of the time-consuming data analysis 
steps, the KH-3000-01 does not currently meet the 
requirements for real-time pollen monitoring in Ireland.
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5	 Pollen Forecasting and Modelling

5.1	 Pollen Calendar – Dublin

A number of pollen types have been considered of 
particular importance owing to their allergenic effects 
and atmospheric abundance (Sofiev and Bergmann, 
2013). Several of these are prevalent in the Irish 
environment, with the main allergenic Irish pollen types 
being Alnus (alder), Corylus (hazel) and Betula (birch) 
pollen from the Betulaceae family and Poaceae (grass) 
pollen. As a result of the adverse health effects caused 
by these allergenic pollen types, predicting periods 
of high pollen concentrations would be beneficial 
for allergy sufferers so that suitable precautions and 
treatments could be taken. Forecasting the daily pollen 
concentration for a particular location is often done 
using observational or source-orientated mathematical 
models, which are covered in the sections below. 
However, these methods require high concentrations 
of pollen, meteorological, phenological and transport 
data, etc., as well as suitable computational support. 
These resources are not always available, particularly 
in regions with underdeveloped pollen monitoring 
networks. More simplistic observational methods, such 
as pollen calendars, can help early-stage monitoring 
campaigns by overcoming such limitations. Pollen 
calendars are the most rudimentary method of pollen 
forecasting and are largely based on the seasonality of 
flowering phenophases (Dahl et al., 2013) and require 
fewer data.

A pollen calendar is a graphical representation of 
the average annual/seasonal trends of major pollen 
types for a particular location. In this case, the first 
pollen calendar for Dublin was developed. Although an 
approximation of the seasonal trends can be observed 
annually, variations can exist depending on the year; 
for example, the MPS could differ substantially from 
one year to the next, typically influenced by changes 
in meteorology. Therefore, it is recommended that 
at least 5–7 years of data are incorporated into the 
construction of a pollen calendar to account for such 
variations (Galán et al., 2017). For this reason, the 
data obtained solely from the POMMEL monitoring 
campaign are insufficient for the construction of a 
reliable pollen calendar for Dublin. Unpublished 
pollen data from 1978–1980 and 2010–2011 were 

used in creating the first pollen calendar for Dublin 
(see Figure 5.1). However, at least 2–3 more years 
of monitoring will be required before a preliminary 
pollen calendar can be constructed for the other pollen 
monitoring sites at Carlow and Cork with any degree of 
certainty.

5.1.1	 Pollen calendar construction

Data from unpublished Dublin pollen monitoring 
campaigns from 1978–1980 and 2010–2011 and 
from the POMMEL monitoring campaign (2017–2019) 
were combined to construct the first pollen calendar 
for Dublin. The mean daily pollen values for all years 
were calculated for 21 prevalent pollen taxa present in 
the Irish environment. Several different methods have 
been suggested for developing pollen calendars over 
the years (D’amato and Spieksma, 1992; Lo et al., 
2019; O’Rourke, 1990; Rojo et al., 2019; Werchan 
et al., 2018). Most studies tend to use methods based 
on the Spieksma model, originally developed in 1992 
(Rojo et al., 2019). Daily values for each month are 
further divided into five sections per month, containing 
6 days each. The mean value for each section is 
then calculated. This is repeated in each pollen type. 
The main flowering period for a particular pollen type 
is then calculated (from 10% to 90%), beginning 
once 10% of the mean annual pollen concentration 
is reached and ending once 90% is reached. Early 
and late flowering periods outside the main flowering 
periods are determined in a similar manner. The early 
flowering period is defined as occurring when the 
annual mean pollen concentration ranges from > 5% to 
< 10%, and the late flowering period corresponds to an 
annual mean pollen concentration > 90% and < 99.5%. 
Finally, the possible occurrence time is determined as 
any time outside the 0.5–99.5% range when pollen is 
observed. The pollen calendar is then constructed and 
coloured according to the level of allergenicity posed 
by each pollen type and shaded according to possible, 
early/late and main flowering periods.

The calendar (Figure 5.1) represents a useful resource 
for allergy sufferers in managing their allergies and 
respiratory health.
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5.2	 Observation-based Models – 
Dublin

Although pollen calendars offer an approximate 
prediction of the commencement and duration of 
the MPS for a variety of prevalent pollen types, they 
cannot predict days of imminent concern. Airborne 
pollen concentrations are largely related to both 
meteorological and phenological parameters. By 
understanding the complex relationships that exist 
between pollen concentrations (dependent variable) 
and one or more independent variables, predictions 
of future values can be made. With the increasing 
trends in allergy prevalence, the ability to predict 
pollen concentrations, especially those of allergenic 
significance, is of great benefit to allergy sufferers. 
This provides sensitised members of the public with 
ample warning to take any necessary precautions/
treatments. The best form of allergy prevention is 
often avoidance. Therefore, knowing in advance the 
exact days when pollen exposure will be high can 
be more practical and beneficial than knowing the 
seasonal trends depicted by pollen calendars alone. 
A vast range of observational modelling approaches 
exist, and these have been applied to aerobiological 
data (Maya-Manzano et al., 2020). However, 
observation-based modelling approaches do require 
sufficient recorded data to train models appropriately 
so that they can accurately relate variations in pollen 
concentration to significant meteorological parameters 
(Scheifinger et al., 2013). Therefore, a series of 
classification and regression models have been 

developed for Dublin city, as sufficient, unpublished 
historical data also exist for the sampling area, 
providing more accurate modelling potential than the 
other sampling locations in the POMMEL network.

Typically, prediction models are developed for pollens 
of allergenic concern, since total pollen concentrations 
may not necessarily indicate high allergen exposure. 
As a result, we focused on developing prediction 
models for the most allergenic pollen types present 
in the Irish environment. These are Alnus, Betula and 
Poaceae. In fact, most pollen sensitisations in Europe 
are caused by exposure to Poaceae and Betula pollen 
(Bousquet et al., 2007). This is an important point, 
as many of those who suffer from hay fever do not 
realise it, as their symptoms occur outside the summer 
months and are due to tree pollen. The bimodal 
pollen trend observed for Dublin was also dominated 
by Betula and Poaceae. Two peak pollen periods 
appear annually for Dublin: the first spring peak 
period is dominated by Betula pollen and a second 
summer peak results from higher concentrations of 
Poaceae pollen. These periods therefore represent the 
periods of notable allergenic importance. In addition, 
Alnus dominates early pollen release, generally 
commencing in January. Alnus pollen, released to a 
lesser extent than Betula and Poaceae pollen, still 
plays a vital role in pollen sensitisation. Studies have 
identified the relationship between Alnus and Betula 
pollen allergenicity, particularly in already sensitising 
urban environments such as Dublin. The successive 
flowering of both Betulaceae genera results in a 

Figure 5.1. First pollen calendar for Dublin (incorporating data from 1978–1980, 2010–2011 and 
2017–2019).
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“priming effect” (Fernández-González et al., 2020): 
individuals sensitised to Betula pollen could suffer 
allergic symptoms during January and then later 
experience heightened symptoms in spring from lower 
levels of Betula pollen because the “priming effect” 
reduces the concentration threshold for symptom 
presentation (Fernández-González et al., 2020).

The remainder of this chapter will discuss the 
predictive models developed for Alnus, Betula and 
Poaceae ambient pollen concentrations for Dublin. 
However, the work here could also be applied to highly 
allergenic ornamental pollen species in the future. 
Input variables varied slightly depending on pollen type 
and model algorithm. This is not unexpected, since 
pollen release and transport are largely dependent on 
various meteorological and phenological conditions. 
Because flowering and pollen-producing periods differ, 
the significance of these parameters can vary with 
plant type. The importance of predictor variables has 
been shown to vary between plants of the same family 
that have relatively complementary pollinating periods, 
such as trees of the Betulaceae family (Alnus, Betula, 
Corylus) (Nowosad et al., 2018). As a result, the 
models developed below are selective for both pollen 
type and sampling location.

5.2.1	 Alnus models

Alnus data for 1978–1980 (unpublished), sampled at 
Trinity College Dublin, for 2011 (unpublished), sampled 
at Baldonnel aerodrome, and for 2018–2019, sampled 
at TU Dublin, Kevin Street, were used to develop 
several regression models for Alnus pollen prediction. 
Meteorological data from the weather station located 
in Phoenix Park in Dublin were obtained from the Met 
Éireann website (http://www.met.ie/climate/available-
data/historical-data). Input variables represent daily 
mean values unless otherwise stated. Regression 
models refer to predicting the approximate numerical 
value output of ambient daily pollen concentration, 
whereas classification models refer to predicting a 
result of character or label class.

The models developed for Alnus pollen prediction 
included stepwise multiple regression (MR) and 
SVM regression (SVMR) models. In each case, the 
models were trained with the first 80% of the data 
collected and validated with the remaining 20%, 
an approach known as supervised learning. The 
initial input variables used included both past daily 

Alnus concentrations (dependent variables) and the 
various meteorological and phenological parameters 
shown in Table 5.1. Each model type assesses the 
input–output relationship slightly differently using the 
training data. The model can then mathematically 
mimic this behaviour and predict output results from 
input independent variables. Model inputs were 
selected based on significance and likely connection 
to the overall biological process. Although a list of 
initial parameters is provided in Table 5.1, models 
were optimised using this method for input selection 
to further simplify the model, and this was repeated for 
all of the models. The omitted 20% validation subset 
was predicted using the trained model. Predicted 
results can then be compared with known pollen 
concentrations. In addition, combining the two sets of 
predicted results from both models enables the mean, 
median and weighted mean values to be determined. 
The weighted mean was calculated using the weighted 
Spearman’s rank correlation coefficient, which 
compared model performance with the true, observed 
values.

Predicted results can then be evaluated by comparing 
them with the observed concentrations (Figures 5.2 
and 5.3). As well as examining the normality of 
predicted results (using the Lilliefors test), several 
metrics can be used to evaluate the overall model 
performance and compare different models, including 
Spearman’s rank correlation coefficient, symmetric 
mean absolute percentage error (SMAPE), root mean 
square error (RMSE), mean absolute error (MAE) and 
standard deviation (SD). These metrics were used to 
evaluate the predicted results (Table 5.2). Correlation 
coefficients provide information on the strength of 
the relationship between the predicted and recorded 
values, whereas SMAPE, RMSE and MAE provide 
information on the error in the forecast. Lower values 
of SMAPE, RMSE and MAE indicate fewer errors.

5.2.2	 Betula models

Betula pollen data for 1978–1980 (unpublished), 
sampled at Trinity College Dublin, for 2010–2011 
(unpublished), sampled at Baldonnel aerodrome, 
and for 2018–2019, sampled at TU Dublin, Kevin 
Street, were used to develop several regression and 
classification models for Betula pollen prediction. 
Meteorological data from the weather station located 
in Phoenix Park in Dublin were obtained from the Met 

http://www.met.ie/climate/available-data/historical-data
http://www.met.ie/climate/available-data/historical-data


26

Pollen Monitoring and Modelling (POMMEL)

Table 5.1. Alnus model input variables

Variable class Input variables

Pollen inputs Pollen concentration of previous day

Average pollen concentration of previous 5 days

Average pollen concentration of previous 10 days

Slope of pollen concentrations during previous week

Normalised slope of pollen concentrations during previous week

Phenological inputs Growing degree-days

(Base temperature = 2–10°C)

Meteorological inputs Slope for atmospheric pressure during the last week

Wind direction

Wind speed

Rainfall

Average rainfall of previous 10 days

Cloud cover

Maximum temperature

Minimum temperature

Mean temperature

Average mean temperature of previous 10 days

Sunshine duration

Grass minimum temperature

Global radiation

Figure 5.2. Comparison of Alnus airborne pollen concentration regression models.
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Éireann website (http://www.met.ie/climate/available-
data/historical-data). Input variables represent daily 
mean values unless otherwise stated. In this case, 
classification refers to predicting whether daily pollen 
concentrations will be low (< 30 grains/m3) or high  
(> 30 grains/m3).

The models developed for Betula pollen prediction 
included stepwise MR, SVMR, ANN regression, 
k-nearest neighbour (KNN), RF classification and 
SVM classification models. In each case, the models 
were again trained with the first 80% (training 
dataset) of the collected data and validated with the 
remaining 20% (test dataset). The data used consisted 
of both past daily Betula pollen concentrations 
(dependent variables) and various parameters 
shown in Table 5.3. Each model type assesses the 

input–output relationship slightly differently using the 
training data. Predicted model results for the test data 
were compared with the observed concentrations 
(Figures 5.4 and 5.5). Furthermore, combined mean, 
median and weighted mean predicted model results 
were evaluated by examining their normality (Lilliefors 
test) and comparing Spearman’s rank correlation 
coefficient, SMAPE, RMSE, MAE and SD results 
(Table 5.4).

In addition to the regression analysis of model 
performance for predicting ambient Betula pollen 
concentrations discussed above, several classification 
models, including RF and SVM, were developed. 
These classification models were again trained and 
validated using the sample data split as specified 
above and their performance was assessed by 
comparing the overall classification accuracy. The 
correct Betula pollen levels were predicted accurately 
77% of the time and 64% of the time by the RF and 
SVM classification models, respectively. 

5.2.3	 Poaceae models

Poaceae pollen data for 1978–1980 (unpublished), 
sampled at Trinity College Dublin, and for 2017–2019 

Figure 5.3. Comparison of combined Alnus airborne pollen concentration model results.

Table 5.2. Evaluation of predicted Alnus pollen 
concentration

Method Spearman’s r SMAPE RMSE MAE SD

Median 0.81 0.64 24.99 13.20 17.20

Mean 0.81 0.64 24.99 13.20 17.20

Weighted 
mean

0.82 0.63 25.01 12.85 16.28

http://www.met.ie/climate/available-data/historical-data
http://www.met.ie/climate/available-data/historical-data
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Table 5.3. Betula model input variables

Variable class Input variables

Pollen inputs Pollen concentration of previous day

Average pollen concentration of previous 5 days

Average pollen concentration of previous 10 days

Slope of pollen concentrations during previous week

Normalised slope of pollen concentrations during previous week

Phenological inputs Growing degree-days

(Base temperature = 2–10°C)

Meteorological inputs Slope for atmospheric pressure during the last week

Wind direction

Wind speed

Rainfall

Average rainfall of previous 10 days

Cloud cover

Maximum temperature

Minimum temperature

Mean temperature

Average mean temperature of previous 10 days

Sunshine duration

Grass minimum temperature

Global radiation

Figure 5.4. Comparison of Betula airborne pollen concentration regression models.
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sampled at TU Dublin, Kevin Street, were used to 
develop several regression and classification  
models for Betula pollen prediction. Meteorological 
data from the weather station located in Phoenix Park 
in Dublin were obtained from the Met Éireann website  
(http://www.met.ie/climate/available-data/historical-
data). Input variables represent daily mean values 
unless otherwise stated.

The models developed for Poaceae pollen prediction 
included stepwise MR, SVMR, ANN regression, 
KNN, RF regression, and RF and SVM classification 
models. In each case, the models were trained with 
80% (training dataset) of the collected data and 
validated with the remaining 20% (test dataset). 
The data used consisted of both past daily Poaceae 
pollen concentrations (dependent variables) and 
various meteorological parameters, as shown in 
Table 5.5. Each model type assesses the input–output 

relationship slightly differently using the training 
data. Predicted model results for the test data 
were compared with the observed concentrations 
(Figures 5.6 and 5.7). Furthermore, combined mean, 
median and weighted mean predicted model results 
were evaluated by examining their normality (Lilliefors 
test) and comparing Spearman’s rank correlation 
coefficient, SMAPE, RMSE, MAE and SD results 
(Table 5.6).

In addition to the regression analysis of model 
performance for predicting ambient Poaceae pollen 
concentrations discussed above, several classification 
models, including RF and SVM, were developed. 
These models were again trained and validated 
using the sample data split as specified above and 
their performance was assessed by comparing the 
overall classification accuracy. Both the RF and SVM 
classification models accurately predicted the Poaceae 
pollen level 94% of the time.

Compared with many other European networks that 
have decades of pollen monitoring data that can be 
used for forecasting studies and model training and 
enhancement, the Irish network is very much in its 
infancy. For the most part, the performance of the 
regression models developed for the three pollen 
taxa examined does tend to follow the general trend 

Figure 5.5. Comparison of combined Betula airborne pollen concentration model results.

Table 5.4. Predicted Betula pollen concentration 
evaluation

Method Spearman’s r SMAPE RMSE MAE SD

Median 0.72 0.54 95.53 53.60 64.52

Mean 0.68 0.57 99.27 58.10 57.22

Weighted 
mean

0.73 0.54 98.32 55.59 56.21

http://www.met.ie/climate/available-data/historical-data
http://www.met.ie/climate/available-data/historical-data
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of the observed pollen season. However, notable 
deviations are observed, particularly for periods of 
observed high ambient pollen concentrations. This is 
not unexpected at this early stage of forecasting and 
is related to the fact that the developed models are not 
fully capable of predicting such high deviations using 
only a few years of training data. The expansion and 
continuation of monitoring efforts and incorporation of 
subsequent seasonal data will improve future model 
performance. This reasoning can also explain the 
acceptable performance of the classification models, 
since they can predict broad classes more accurately 
than specific numerical values. At the current time, it 
is suggested that classification models are used for 
pollen prediction rather than regression models.

5.3	 Public Forecasts

During the POMMEL project, several public forecasts 
were predicted for Dublin using the previously 
mentioned models and readily disseminated to the 
public through the @IrishPollen social media account 
on Twitter (Figure 5.8). The latest forecasting run took 
place during late April 2020 to warn the public of high 
Betula pollen concentrations. 

Future work is required to further develop these 
initial models and expand the forecasts to the other 
pollen sampling locations. This will be achieved by 
continuing monitoring efforts in the coming years to 
further expand model training data and improve model 
robustness.

Table 5.5. Poaceae model input variables

Variable class Input variables

Pollen inputs Pollen concentration of previous day

Average pollen concentration of previous 5 days

Average pollen concentration of previous 10 days

Slope of pollen concentrations during previous week

Normalised slope of pollen concentrations during previous week

Phenological inputs Growing degree-days

(Base temperature = 2–10°C)

Meteorological inputs Slope for atmospheric pressure during the last week

Wind direction

Wind speed

Rainfall

Average rainfall of previous 10 days

Cloud cover

Maximum temperature

Minimum temperature

Mean temperature

Average mean temperature of previous 10 days

Sunshine duration

Grass minimum temperature

Global radiation

North Atlantic Oscillation (NAO) index

Relative humidity

Mean soil temperature

Evapotranspiration

Potential evapotranspiration
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Figure 5.6. Comparison of Poaceae airborne pollen concentration regression models.

Figure 5.7. Comparison of combined Poaceae airborne pollen concentration model results.
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Table 5.6. Predicted Poaceae pollen concentration 
evaluation

Method Spearman’s r SMAPE RMSE MAE SD

Median 0.70 0.57 190.47 130.12 100.94

Mean 0.68 0.59 196.09 135.50 93.22

Weighted 
mean

0.74 0.54 183.16 121.56 107.46

Figure 5.8. Example Twitter forecast.
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6	 Recommendations

Given the extensive work undertaken by the POMMEL  
project in constructing a network and prototype 
forecast system, it is imperative that such work should 
act as the building blocks for a sustainable system in 
future, rather than a single output. Thus, this section 
of the report outlines a number of recommendations 
and three possible directions or networks that could 
incorporate these recommendations and enable the 
establishment of an operational network for Ireland. 
These three potential networks (termed small, medium 
and large in scale) differ by cost, and the output (i.e. 
the data required for a potential prototype forecast for 
Ireland) is also considered. They will come to fruition 
only if the recommended funding is in place; this 
could be obtained via the National Development Fund 
(2018–2026), as this project spans the four pillars of 
the fund (urban regeneration and development, rural 
development, disruptive technologies and climate 
action). In tandem with support from the EPA and Met 
Éireann, this would allow an operational network to be 
established.

Initially, a 5-year tenure will act as the time frame 
for this breakdown of costs. However, how such 
networks can continue into the future, and the costs 
they will incur, are also considered. The recommended 
monitoring stations also take into account the 
data required for the constructed models shown 
in Chapter 4. Thus, real-time instrumentation for 
identifying pollen would be necessary.

Figure 6.1 exhibits an outline of the potential 
geographical spread of the aforementioned stations/
sites for the three options proposed by this work. 
The red symbols indicate the sites for the small-scale 
network (eight in total), the red and black symbols 
combined constitute the medium-scale network 
(10 sites) and the combination of red, black and blue 
symbols illustrates the large-scale network with a total 
of 12 locations.

The locations were selected for several reasons. 

●● To permit a good geographical spread of stations, 
which in turn could enable the transport and 
dispersion of pollen over the island of Ireland to 

be determined. This will become more important 
should dispersion modelling be used in the future. 

●● To allow the greatest number of people to benefit 
from site-specific data on pollen/fungal spores and 
help them reduce their exposure to pollen during 
the pollen season, it is recommended that most 
stations should be placed in the most populous 
conurbations in the country (Dublin, Cork, 
Limerick, etc.). The costs and benefits of such an 
approach are discussed later in this report. 

●● To allow additional work on determining the 
influence of agriculture on the production of 
both pollen and fungal spores, some stations 

Figure 6.1. Sampling sites for the Irish pollen 
network. Red symbols indicate the sites for 
the small-scale network (eight sites). Red and 
black symbols combined indicate 10 sites for 
the medium-scale network, and red, black and 
blue symbols combined indicate the 12 potential 
locations for the large-scale network.
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are located in regions where crop production is 
prominent. 

●● To understand the climatic influences on pollen 
(fungal spore) release, the stations are positioned 
the length and breadth of the country.

The options presented here aim to bring Ireland into 
line with the rest of Europe. All other countries have 
operational networks/forecasts, and several have 
either created and/or are developing real-time variants 
(e.g. Germany, Belgium, Switzerland). Switzerland, 
for instance, is currently using and developing an 
automated pollen monitoring network (similar to 
the one recommended here), using 14 stations 
(Figure 6.2) distributed around the country. Switzerland 
is approximately 60% the size of Ireland and the 
network has a good geographical coverage, with only 
mountainous areas having fewer stations. The average 
distance between stations is less than that envisaged 
for the Irish network. Other countries, such as France 
and Spain, with 65 and approximately 40 sampling 
sites, respectively, have more networks with more 
stations, as they have greater areas to cover.

During the POMMEL project, sampling was undertaken 
at Dublin and Carlow throughout the work and partially 
in Cork and Sligo. Thus, it is recommended that these 
sites are retained, as they offer extended datasets 
for those regions. This will allow new data to be 
collated with data already collected and aid the further 
refinement of the models created for these regions in 
this study. Moreover, the continued presence of the 
project team for the roll-out and implementation of 
the selected network (be it small, medium or large in 

scale) is recommended, given the expertise the team 
has developed during the process.

Although the results from the project highlight the 
potential for real-time instrumentation to deliver 
results in a fraction of the time required by traditional 
methods, the instruments were non-specific, supplying 
total pollen counts rather than species data. However, 
in the time taken to implement this project, newer 
real-time pollen monitoring instrumentation, such as 
the Rapid-E by Plair (Šauliene et al., 2019), the Poleno 
by Swisens (Sauvageat et al., 2020) and the BAA500 
by Hund Wetzlar (Oteros et al., 2015), have displayed 
greater precision and accuracy in quantifying and 
characterising pollen species than demonstrated in this 
study. Indeed, comparisons between the devices used 
in this work and the Plair, Poleno and Hund Wetzlar 
instruments have been undertaken (Lieberherr et al., 
2021; Tummon et al., 2021) and have highlighted 
the accuracy and selectivity of this new generation 
of instruments. Thus, the recommendation would 
be to use these instruments, or at the very least test 
these devices in an Irish context in a pilot study to 
understand their capabilities. These instruments 
should be considered for a potential Irish network, 
however, given their use in other networks (Swiss, 
Belgian and German). It may be possible for Ireland 
to skip a generation of instrumentation in creating its 
pollen network, placing it at the forefront of what is 
currently available in pollen detection, and this could 
also be of particular interest for detecting invasive 
species of plants and fungi.

Many different considerations were needed and 
lessons learned when setting up this preliminary Irish 
pollen network, all of which will feed into the proposed 
sustainable network. From the sites used (rural and 
urban), vast differences in the pollen spectrum and 
concentration were noted; for example, the urban 
Dublin site recorded a far greater variety of pollen 
species (at lower concentrations) than sites in rural 
settings. Thus, an automatic sampler with the capacity 
to differentiate between pollen from different species 
would be advantageous, particularly since not all 
pollen is associated with allergy (Figure 5.1). In the 
light of the proportion of the Irish population living in 
the Dublin area, allowing those affected by specific 
allergens to understand when and what was causing 
their problem would be very beneficial. This study 
gives us an understanding of both what the prevalent 
pollen types are and what pollen species a new 

Figure 6.2. MeteoSwiss pollen monitoring network 
(https://www.meteoswiss.admin.ch/home/
measurement-values.html?param=messnetz-
pollen).

https://www.meteoswiss.admin.ch/home/measurement-values.html?param=messnetz-pollen
https://www.meteoswiss.admin.ch/home/measurement-values.html?param=messnetz-pollen
https://www.meteoswiss.admin.ch/home/measurement-values.html?param=messnetz-pollen
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network would have to be trained to identify. Again, 
this is vital information for a new network. Equally, the 
significant amount of work conducted on the model 
and forecast creation will be retained, as the models 
developed in this work would be capable of using the 
real-time data produced from the newer generation 
of devices. This project represents the bedrock for 
any future steps in creating a network. Finally, three 
options for the use of real-time instrumentation in the 
main urban areas of Ireland are described below. In 
addition, consideration is given to the use of larger-
scale networks to monitor pollen in rural locations.

6.1	 Option A: Small-scale Network

In this option, the network would continue to use 
the sites established in this work (Cork, Dublin and 
Carlow and a site in Sligo) alongside additional 
sites in Limerick, Galway, Waterford and Athlone 
(red markers in Figure 6.1). These sites provide a 
good geographical spread, encompass the areas of 
highest population density and will permit a partial 
understanding of the climatic influences on the 
distribution of pollen species and concentrations in 
Ireland.

These sites would all include novel real-time pollen 
detection instrumentation (WIBS, Rapid-E, BAA500, 
Poleno, etc.), which have overtaken the traditional 
gold standard in pollen collection and analysis (Hirst-
type trap) because they enable rapid discrimination 
between pollen species. Such instruments would focus 
on the collection of pollen only if the requisite detection 
features for such an undertaking were costed (see 
Table 6.1). The results of using such instrumentation 
are now reported in the literature on this subject 

(Crouzy et al., 2016; O’Connor et al., 2014; Šauliene 
et al., 2019; Tummon et al., 2021).

Table 6.1 presents the small-scale option. A research 
assistant and postdoctoral researcher have been 
costed and would enable the collection, processing 
and production of the data required to produce the 
pollen forecast for Ireland. This cost increases year 
on year, in line with the university research salary 
scales/guidelines. While the initial capital expenditure 
(based on manufacturer’s prices) may seem high, 
such instrumentation is now believed to remain 
operational for a minimum of 10 years and probably 
longer. Over such a period, costs would average out 
to €50,000 per year. Purchase of such instrumentation 
would also permit the supplier’s holistic monitoring 
system to be used, which includes a service 
arrangement, maintenance of the instruments and 
data tools for the analysis, storage and streamlined 
output of pollen concentrations. Additional funding 
would be required for small amounts of consumables 
and weather stations to facilitate the operation of the 
instrumentation and allow weather data to be collected 
for further refinement of the forecast models produced 
in this work.

While several countries continue to employ traditional 
techniques owing to the low initial set-up costs, the 
robust nature of the instrumentation and the ease 
with which data can be compared with historical data, 
such sampling also has several drawbacks. Although 
the initial instrumental set-up costs may be low, 
personnel and consumable costs related to instrument 
maintenance, filter preparation and analysis result in 
rapidly increasing costs, particularly with several sites 
(as outlined here). Thus, over the lifetimes of real-time 

Table 6.1. Costings associated with the small-scale network

Cost

Year

Total1 2 3 4 5

Personnel (postdoctoral researcher and research assistant) 85,498 87,227 90,151 92,742 95,408 451,026
Instrumentation 400,000 – – – – 400,000
Service, maintenance, data handling costs 70,000 70,000 70,000 70,000 70,000 350,000
Training 4000 – – – 4000 8000
Consumables, weather station, etc. 32,000 3000 3000 3000 3000 44,000
Data visualisation/API and model development 10,000 10,000 10,000 10,000 10,000 50,000
Total 601,498 170,227 173,151 175,742 182,408 1,303,026

API, application programming interface.



36

Pollen Monitoring and Modelling (POMMEL)

and traditional instruments, the traditional networks 
are more costly. In addition, the traditional sampler 
is associated with an analysis lag time of a minimum 
of 7–10 days, resulting in its output data being far 
less valuable for use in the models developed in the 
POMMEL project.

This point is highlighted in Figure 6.3. Initially, 
calculated costs for the traditional network are lower 
than those of the automated network, but personnel 
costs soon outstrip the upfront expenditure needed 
to run such a labour-intensive process. By year 5, 
the costs of a traditional network are higher than 
those of the automated network and this difference 
will only increase as the years progress. Thus, the 
recommendation would be to implement an automated 
network.

6.2	 Option B: Medium-scale Network

The medium-scale network is similar in many of the 
costings to the small-scale network, with the greatest 
differences seen in the instrumentation section 
(Table 6.2). This is because an additional two sites, 
in Kerry and Cavan, have been incorporated into the 
network (Figure 6.1; black symbols). In addition, half 
of the sites would use the real-time instrumentation 
with supplemented detection features (e.g. the ability 
to count fungal spores). While such an upgrade 
increases the cost significantly, it also enables the 
potential determination of other ambient particles that 
are linked to human and plant health (fungal spores, 
particulate matter, etc.). Thus, the potential for the 
creation of a partial bioaerosol network for Ireland 
would be realised under this proposal.
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Figure 6.3. Costs of traditional (orange) vs automated (blue) instrumentation for the small-scale pollen 
network.

Table 6.2. Costings associated with the medium-scale network

Cost

Year

Total1 2 3 4 5

Personnel (postdoctoral researcher and research assistant) 85,498 87,227 90,151 92,742 95,408 451,027
Instrumentation 1,000,000 – – – – 1,000,000
Service, maintenance, data handling costs 90,000 90,000 90,000 90,000 90,000 450,000
Training 4000 – – – 4,000 8000
Consumables, weather station, etc. 32,000 3000 3000 3000 3000 44,000
Data visualisation/API and model development 10,000 10,000 10,000 10,000 10,000 50,000
Total 1,221,498 190,227 193,151 195,742 202,408 2,003,027

API, application programming interface.
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The costs and rationale remain the same for the 
personnel costs, training and consumables. However, 
further funds would be needed to cover the service, 
maintenance and data handling costs of such a 
network. Again, for a traditional network to deliver 
data comparable to those generated by this option, 
additional staff would have to be hired and trained to 
deliver fungal analysis (an even more laborious task 
than pollen counting). Thus, the automated network is 
again more cost-effective in the long run.

6.3	 Option C: Large-scale Network

The large-scale network again shows resemblances 
to the previously discussed small- and medium-scale 
networks, with the greatest differences seen in the 
instrumentation section (Table 6.3). This is because an 
additional two sites, in Tipperary and Donegal, have 
been incorporated into the network in comparison with 
the medium-scale network (Figure 6.1; blue symbols). 
In addition, all of the sites would use the real-time 
instrumentation with all potential detection features 
(e.g. the ability to determine fungal spores). Like the 
medium-scale network, such an advancement in 
technology increases the cost substantially, but it also 
enables the potential determination of other ambient 
particles that are linked to human and plant health,  
as mentioned above. Thus, under this proposal,  
the creation of a full bioaerosol network for Ireland, 
rather than a partial bioaerosol network (option B) or 
a pollen network (option A), could become a reality. 
Indeed, with the additional sites and with all sites  
fitted with instrumentation capable of detecting both 
pollen and fungal spores, a greater understanding  
of plant pathogens would be possible than with  
options A and B. This would be a novel development 

and, given the EU-mandated need to reduce the 
farming community’s fungicide use by 50% in the 
coming years, a more targeted approach to fungicide 
spraying will be needed. Collecting bioaerosol 
information in real time and incorporating it with 
meteorological parameters may greatly enhance the 
forecasting of fungal spores related to crop disease. 
Thus, such a network outlined here may be able to 
reduce the need to spray crops on a regular basis. 
This would have a large benefit in terms of the 
environment and crop output.

The costs and rationale remain the same for the 
personnel costs, training and consumables, while 
further funds would be needed to cover the service, 
maintenance and data handling costs of such a 
network. Like the rationale for the other two options, 
for a traditional network to deliver data comparable 
with those generated by this option, additional 
staff would have to be hired and trained. Thus, the 
automated network is again the more cost-effective 
option in the long run.

6.4	 Pollen Modelling and Forecasting 

Should one of the aforementioned networks with 
real-time instrumentation be instituted, this would allow 
the models produced in this work to be used. This 
is a recommendation. As data are collected from a 
network, the models can be further refined in the future 
as time goes on. This is recommended, as Ireland 
lacks information on pollen species and concentrations 
in the ambient environment.

Both numerical and classification models were 
developed in this work; however, it is recommended 
that the output to the public be in the form of a traffic 

Table 6.3. Costings associated with the large-scale network

Cost

Year

Total1 2 3 4 5

Personnel (postdoctoral researcher and research assistant) 85,498 87,227 90,151 92,742 95,408 451,027
Instrumentation 1,300,000 – – – – 1,300,000
Service, maintenance, data handling costs 110,000 110,000 110,000 110,000 110,000 550,000
Training 4000 – – – 4000 8000
Consumables, weather station, etc. 32,000 3000 3000 3000 3000 44,000
Data visualisation/API and model development 10,000 10,000 10,000 10,000 10,000 50,000
Total 1,541,498 210,227 213,151 215,742 222,408 2,403,027

API, application programming interface.
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light colour-coding system (red, yellow, green) to 
indicate the potential for pollen to cause allergic 
reactions: red indicating high levels of a particular 
pollen, yellow a medium concentration and green low 
levels. In a test run of the models, the project team 
used an example of this in April 2020 (Figure 5.8). This 
is recommended, as the public (the most important 
stakeholder) will have little understanding of numerical 
outputs in a pollen forecast. However, the public will 
understand such a colour-coded warning system. This 
would be slightly different from the low, medium, high 
and very high divisions used by Met Éireann currently.

Initially the provincial output of the pollen forecasts 
would be retained (Munster, Leinster, Connaught and 
Ulster); however, as additional data from the network 
become available over time, additional region-specific 
forecasts could be developed. Should more advanced 
instrumentation be used, as noted in network options 
B and C, there will also be the possibility of fungal 
spore forecasting.

Work has already begun on the creation of a pollen 
dispersion model for Ireland using HYSPLIT. Such an 
approach has been attempted in the past (Hernandez-
Ceballos et al., 2014; Monroy-Colín, 2020). For 
this work to be completed, however, a postdoctoral 
researcher would be required. Thus, approximately 
€60,000 a year would be necessary for such an 

endeavour to be undertaken and delivered. This cost 
has not been factored into the options outlined above.

6.5	 Dissemination of Pollen Forecast 
Information

The forecast created will enable predictions 2–3 days 
ahead, in line with what is currently produced. The 
forecast should be displayed in the most public of 
forums to permit its ready dissemination to those in 
need. Hence, the forecast could be exhibited on social 
media (as the Asthma Society of Ireland does) with a 
dedicated page, and displayed on a web page similar 
to that used by Met Éireann.

Other European countries have begun to use 
specifically designed phone apps for the dissemination 
of pollen data. While not costed here, there is potential 
for such an information pathway should real-time 
monitoring be undertaken rather than traditional 
monitoring networks.

Good information dissemination methods will be 
necessary to reach those who have health concerns 
related to exposure to bioaerosols. This is important 
for both those resident in the country and those visiting 
Ireland as tourists. Being able to provide relevant 
information to visitors to the country would help to 
ensure that they have a satisfactory experience and 
could encourage repeat visits.
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7	 Conclusions

In conclusion, the POMMEL project produced the 
first Irish pollen network, and in doing so sampled 
and determined the concentrations of ambient pollen 
species in both rural (Carlow) and urban (Dublin) 
settings. This was done with both traditional impaction 
methodologies and with real-time light scattering and 
light-induced fluorescence (novel) approaches. The 
traditional methods highlighted the difference between 
the sites used, with grass pollen more prevalent at the 
rural site.

These data, along with previously collected pollen data 
from the 1980s, were collated to create the first pollen 
calendar for Ireland. This reveals the start and end of 
the season, and peak release periods, for each pollen 
type and highlights the most allergenic species present 
in the Irish environment.

The novel approaches showed decent correlation 
when compared with the impaction methodologies 
and had the added benefit of outputting their data 
at a higher time resolution. These data, in tandem 
with other air quality data, could be very useful for air 
quality modelling and risk assessment. However, as 
these approaches were unable to differentiate between 
pollen species, they are more useful as bulk pollen 
monitors than as species-specific detectors.

The pollen data collected, along with meteorological 
parameters and accumulated phenological 
observations, were used to develop a pollen forecast 
model for the main allergenic pollen species in the 
Irish environment. Several modelling methodologies, 
including ANNs, regression analysis and SVM 
learning, were used. We found that the mean and 
median of the models combined produced the best 
results (observed vs predicted).

The project makes a number of recommendations 
based on the work presented, including:

1.	 An automated pollen network similar to one of 
the three options presented in the study (small, 
medium or large scale) should be created, with the 
network chosen based on the funding available. 
Such a network should give good spatial and 
population coverage over Ireland. 

2.	 The use of new iterations of pollen instruments 
in the network should be considered. At the very 
least, a pilot study looking at such instrumentation 
in the Irish context would be useful to determine 
the instruments’ potential for deployment in the 
recommended network. Such new-generation 
instrumentation has shown the ability to 
differentiate between pollen species and deliver 
the requisite data for the pollen forecasting models 
developed in this work (Tummon et al., 2021). 

3.	 An ensemble approach to predict future pollen 
concentrations should be used, as such an 
approach has been shown to deliver the most 
accurate results. 

4.	 The project team should be involved in the 
development of the network given the knowledge 
and expertise developed throughout this work. 

5.	 The regions used in the sampling in this project 
should be used in the new network, as these 
areas have been evaluated and will greatly aid in 
any further development of the models used. 

6.	 A traffic light system should be used to display the 
pollen forecast to the public.

This research will have an impact on the health and 
wellbeing of members of the public, as pollen and 
other PBAPs, even at very low concentrations, can 
cause congestion and flu-like symptoms. In particular, 
this work will help those who have compromised 
respiratory systems, especially asthma sufferers. The 
cost of allergies to countries in Europe is estimated to 
be as much as €150 billion a year (Clot et al., 2020; 
Zuberbier et al., 2014). The direct and indirect costs 
to an individual are estimated to be approximately 
€2400 per year (Zuberbier et al., 2014). Ireland is even 
worse affected given its high prevalence of asthma – 
the fourth highest in the world (Asthma Society of 
Ireland, 2022a). It is estimated that 890,000 people in 
Ireland will experience asthma at some point in their 
lives, and the health-related cost of asthma to the state 
is estimated to be €472 million per annum (Asthma 
Society of Ireland, 2022b). Extending this cost to 
health concerns related to air pollution increases 
the cost to the state to approximately €2 billion per 
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year (DCCAE, 2017). Thus, potential solutions that 
could ease the burden on the health system would 
effectively pay for themselves in the long run, while 
also improving the quality of life of people with asthma.

Adults with asthma miss on average 10 days of work 
a year because of their condition (Asthma Society of 
Ireland, 2018). Furthermore, 80% of Irish people with 
asthma also have a pollen allergy (Asthma Society of 
Ireland, 2020). The impact of seasonal allergies on 
a person’s ability to work and their productivity and 
quality of life has also been discussed extensively 
in the literature (Blaiss, 2010; Kessler et al., 2001; 
Vandenplas et al., 2008, 2018). Estimates of lost 
productivity attributable to allergic rhinitis (hay fever) 
could be as high as 40% (Vandenplas et al., 2008). 
Bioaerosols and anthropogenic pollution are known 
to heighten and trigger “asthma attacks”, and to 
increase wheezing and other breathing difficulties. 
Indeed, in Ireland, one person dies every 6 days as a 
result of asthma, and every 4 minutes a person visits 
an emergency department because of complications 
associated with asthma. This research will therefore 
reduce the prevalence of such events by allowing 
sensitised individuals to control their interaction with 
bioaerosols and pollution, allowing them to better 
manage their condition and increase their wellbeing 
and economic productivity.

Finally, the work could also be easily adapted to 
ascertain and mitigate the effect bioaerosols have on 
agriculture and forestry. Agriculture is one of Ireland’s 
largest economic sectors. The significant benefit to 
the agricultural sector and the country as a whole 
will be based on the enhanced understanding of 
the bioaerosol factors affecting agricultural outputs. 

Historically, bioaerosols, such as the fungus causing 
potato blight, have had a devastating effect on Ireland, 
with the food insecurity caused costing millions their 
lives and precipitating mass emigration. Phytophthora 
infestans (the fungus causing potato blight) is still 
responsible for significant loss of crops each year, 
with €1 billion worth of losses in the EU alone. It is 
estimated that €5 million is spent annually in Ireland 
on fungicides to mitigate the impact of the disease, 
which amounts to between 15 and 20 fungicide 
applications per season (https://www.teagasc.ie/crops/
crops/potatoes/potato-blight-disease-research/). The 
monitoring and forecasting techniques examined here 
can be further adapted to include other bioaerosols 
such as fungal spores. The development and use 
of accurate forecasting methods for fungal spore 
concentrations could help limit the use of fungicides 
in agricultural activities by predicting periods of high 
risk, thereby avoiding unnecessary pollution of the 
atmosphere, crops, soil, etc. (Frenguelli, 1998), 
by providing information so that fewer applications 
are needed to reduce the risk of complete crop 
destruction. Such work has been carried out for 
major agricultural sectors elsewhere in Europe, 
including extensive work on Mediterranean vineyards 
(Fernández-González et al., 2013; Martínez-Bracero 
et al., 2019; Rodríguez-Rajo et al., 2010). Moreover, 
ash dieback, which is caused by fungal spores, is 
estimated to have cost cost Ireland €2.6–5.8 million 
(as of 2018) and caused the death of hundreds 
of thousands of ash trees (Vasaitis and Enderle, 
2017; Viney, 2020). Again, real-time measurements 
could target the areas of need within Ireland and/or 
internationally.

https://www.teagasc.ie/crops/crops/potatoes/potato-blight-disease-research/
https://www.teagasc.ie/crops/crops/potatoes/potato-blight-disease-research/
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Abbreviations

AF	 Asymmetry factor
ANN	 Artificial neural network
APIn	 Annual pollen integral
EAN	 European Aeroallergen Network
FAP	 Fluorescent aerosol particle
MAE	 Mean absolute error
MPS	 Main pollen season
PBAP	 Primary biological aerosol particle
RF	 Random forest
RMSE	 Root mean square error
SMAPE	 Symmetric mean absolute percentage error
SVM	 Support vector machine
TU	 Technological University
WIBS	 Wideband integrated bioaerosol sensor
WIBS-NEO	 Wideband integrated bioaerosol sensor – new electronics option



AN GHNÍOMHAIREACHT UM CHAOMHNÚ COMHSHAOIL
Tá an Ghníomhaireacht um Chaomhnú Comhshaoil (GCC) freagrach as an 
gcomhshaol a chaomhnú agus a fheabhsú mar shócmhainn luachmhar do 
mhuintir na hÉireann. Táimid tiomanta do dhaoine agus don chomhshaol a 
chosaint ó éifeachtaí díobhálacha na radaíochta agus an truaillithe.

Is féidir obair na Gníomhaireachta a  
roinnt ina trí phríomhréimse:

Rialú: Déanaimid córais éifeachtacha rialaithe agus comhlíonta 
comhshaoil a chur i bhfeidhm chun torthaí maithe comhshaoil a 
sholáthar agus chun díriú orthu siúd nach gcloíonn leis na córais sin.

Eolas: Soláthraímid sonraí, faisnéis agus measúnú comhshaoil atá 
ar ardchaighdeán, spriocdhírithe agus tráthúil chun bonn eolais a 
chur faoin gcinnteoireacht ar gach leibhéal.

Tacaíocht: Bímid ag saothrú i gcomhar le grúpaí eile chun tacú 
le comhshaol atá glan, táirgiúil agus cosanta go maith, agus le 
hiompar a chuirfidh le comhshaol inbhuanaithe.

Ár bhFreagrachtaí

Ceadúnú
Déanaimid na gníomhaíochtaí seo a leanas a rialú ionas nach 
ndéanann siad dochar do shláinte an phobail ná don chomhshaol:
•  saoráidí dramhaíola (m.sh. láithreáin líonta talún, loisceoirí, 

stáisiúin aistrithe dramhaíola);
•  gníomhaíochtaí tionsclaíocha ar scála mór (m.sh. déantúsaíocht 

cógaisíochta, déantúsaíocht stroighne, stáisiúin chumhachta);
•  an diantalmhaíocht (m.sh. muca, éanlaith);
•  úsáid shrianta agus scaoileadh rialaithe Orgánach 

Géinmhodhnaithe (OGM);
•  foinsí radaíochta ianúcháin (m.sh. trealamh x-gha agus 

radaiteiripe, foinsí tionsclaíocha);
•  áiseanna móra stórála peitril;
•  scardadh dramhuisce;
•  gníomhaíochtaí dumpála ar farraige.

Forfheidhmiú Náisiúnta i leith Cúrsaí Comhshaoil
•  Clár náisiúnta iniúchtaí agus cigireachtaí a dhéanamh gach 

bliain ar shaoráidí a bhfuil ceadúnas ón nGníomhaireacht acu.
•  Maoirseacht a dhéanamh ar fhreagrachtaí cosanta comhshaoil na 

n-údarás áitiúil.
•  Caighdeán an uisce óil, arna sholáthar ag soláthraithe uisce 

phoiblí, a mhaoirsiú.
• Obair le húdaráis áitiúla agus le gníomhaireachtaí eile chun dul 

i ngleic le coireanna comhshaoil trí chomhordú a dhéanamh ar 
líonra forfheidhmiúcháin náisiúnta, trí dhíriú ar chiontóirí, agus 
trí mhaoirsiú a dhéanamh ar leasúchán.

•  Cur i bhfeidhm rialachán ar nós na Rialachán um 
Dhramhthrealamh Leictreach agus Leictreonach (DTLL), um 
Shrian ar Shubstaintí Guaiseacha agus na Rialachán um rialú ar 
shubstaintí a ídíonn an ciseal ózóin.

•  An dlí a chur orthu siúd a bhriseann dlí an chomhshaoil agus a 
dhéanann dochar don chomhshaol.

Bainistíocht Uisce
•  Monatóireacht agus tuairisciú a dhéanamh ar cháilíocht 

aibhneacha, lochanna, uiscí idirchriosacha agus cósta na 
hÉireann, agus screamhuiscí; leibhéil uisce agus sruthanna 
aibhneacha a thomhas.

•  Comhordú náisiúnta agus maoirsiú a dhéanamh ar an gCreat-
Treoir Uisce.

•  Monatóireacht agus tuairisciú a dhéanamh ar Cháilíocht an 
Uisce Snámha.

Monatóireacht, Anailís agus Tuairisciú ar  
an gComhshaol
•  Monatóireacht a dhéanamh ar cháilíocht an aeir agus Treoir an AE 

maidir le hAer Glan don Eoraip (CAFÉ) a chur chun feidhme.
•  Tuairisciú neamhspleách le cabhrú le cinnteoireacht an rialtais 

náisiúnta agus na n-údarás áitiúil (m.sh. tuairisciú tréimhsiúil ar 
staid Chomhshaol na hÉireann agus Tuarascálacha ar Tháscairí).

Rialú Astaíochtaí na nGás Ceaptha Teasa in Éirinn
•  Fardail agus réamh-mheastacháin na hÉireann maidir le gáis 

cheaptha teasa a ullmhú.
•  An Treoir maidir le Trádáil Astaíochtaí a chur chun feidhme i gcomhair 

breis agus 100 de na táirgeoirí dé-ocsaíde carbóin is mó in Éirinn.

Taighde agus Forbairt Comhshaoil
•  Taighde comhshaoil a chistiú chun brúnna a shainaithint, bonn 

eolais a chur faoi bheartais, agus réitigh a sholáthar i réimsí na 
haeráide, an uisce agus na hinbhuanaitheachta.

Measúnacht Straitéiseach Timpeallachta
•  Measúnacht a dhéanamh ar thionchar pleananna agus clár beartaithe 

ar an gcomhshaol in Éirinn (m.sh. mórphleananna forbartha).

Cosaint Raideolaíoch
•  Monatóireacht a dhéanamh ar leibhéil radaíochta, measúnacht a 

dhéanamh ar nochtadh mhuintir na hÉireann don radaíocht ianúcháin.
•  Cabhrú le pleananna náisiúnta a fhorbairt le haghaidh éigeandálaí 

ag eascairt as taismí núicléacha.
•  Monatóireacht a dhéanamh ar fhorbairtí thar lear a bhaineann le 

saoráidí núicléacha agus leis an tsábháilteacht raideolaíochta.
•  Sainseirbhísí cosanta ar an radaíocht a sholáthar, nó maoirsiú a 

dhéanamh ar sholáthar na seirbhísí sin.

Treoir, Faisnéis Inrochtana agus Oideachas
•  Comhairle agus treoir a chur ar fáil d’earnáil na tionsclaíochta 

agus don phobal maidir le hábhair a bhaineann le caomhnú an 
chomhshaoil agus leis an gcosaint raideolaíoch.

•  Faisnéis thráthúil ar an gcomhshaol ar a bhfuil fáil éasca a 
chur ar fáil chun rannpháirtíocht an phobail a spreagadh sa 
chinnteoireacht i ndáil leis an gcomhshaol (m.sh. Timpeall an Tí, 
léarscáileanna radóin).

•  Comhairle a chur ar fáil don Rialtas maidir le hábhair a 
bhaineann leis an tsábháilteacht raideolaíoch agus le cúrsaí 
práinnfhreagartha.

•  Plean Náisiúnta Bainistíochta Dramhaíola Guaisí a fhorbairt chun 
dramhaíl ghuaiseach a chosc agus a bhainistiú.

Múscailt Feasachta agus Athrú Iompraíochta
•  Feasacht chomhshaoil níos fearr a ghiniúint agus dul i bhfeidhm 

ar athrú iompraíochta dearfach trí thacú le gnóthais, le pobail 
agus le teaghlaigh a bheith níos éifeachtúla ar acmhainní.

•  Tástáil le haghaidh radóin a chur chun cinn i dtithe agus in ionaid 
oibre, agus gníomhartha leasúcháin a spreagadh nuair is gá.

Bainistíocht agus struchtúr na Gníomhaireachta um 
Chaomhnú Comhshaoil
Tá an ghníomhaíocht á bainistiú ag Bord lánaimseartha, ar a bhfuil 
Ard-Stiúrthóir agus cúigear Stiúrthóirí. Déantar an obair ar fud cúig 
cinn d’Oifigí:
• An Oifig um Inmharthanacht Comhshaoil
• An Oifig Forfheidhmithe i leith cúrsaí Comhshaoil
• An Oifig um Fianaise is Measúnú
• Oifig um Chosaint Radaíochta agus Monatóireachta Comhshaoil
• An Oifig Cumarsáide agus Seirbhísí Corparáideacha
Tá Coiste Comhairleach ag an nGníomhaireacht le cabhrú léi. Tá 
dáréag comhaltaí air agus tagann siad le chéile go rialta le plé a 
dhéanamh ar ábhair imní agus le comhairle a chur ar an mBord.
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Identifying Pressures
A reliable pollen forecast and monitoring system is a 
valuable tool to help allergy sufferers avoid unnecessary 
exposure to allergenic pollen and to optimise drug 
treatments by allergists. As Ireland has no monitoring 
system in place, forecasts based on Irish data are not 
available, and the forecast currently used is provided by 
the University of Worcester (UK). 

As a result, the impacts of allergenic pollen on the 
health of the Irish population and any links to climate 
forcing remain understudied. The health implications 
for those who suffer from allergic rhinitis and asthma 
can be substantial, and this, in turn, places undue 
pressure on national healthcare services. 

This project seeks to address the problem by 
undertaking the required monitoring and developing a 
forecast model.

Informing Policy
The direct impact of pollen on society and business can 
be seen throughout the year, with diminished quality 
of life and loss of productivity. The consequences can 
be significant and far-reaching, with financial burdens 
placed on employees and employers alike. 

While most hay fever sufferers experience symptoms 
more irritating than debilitating, the same cannot 
be said of those who also have asthma. With Ireland 
having the fourth highest incidence of asthma in the 
world, this group constitutes a significant sub-section 
of the population. Many find that their condition is 
exacerbated by spores and chemical particulates as well 
as pollen, resulting in significant strain on public health 
infrastructure. 

In the light of these impacts on the general public, 
our society must develop “early warning” systems 
for bioaerosol detection at both national and local 
levels. POMMEL sets about the task of developing such 
systems to minimise pollen exposure of those who are 
negatively affected.   

Developing Solutions
POMMEL produced the first Irish pollen network, and in 
doing so, sampled and determined the concentrations 
of ambient pollen species in both rural (Carlow) and 
urban (Dublin) settings. This was done with both 
traditional impaction methodologies and real-time 
light-scattering and light-induced fluorescence (novel) 
approaches.  The traditional methods highlighted the 
difference between the sites, with grass pollen more 
prevalent at the rural site. 

These data, along with pollen data collected in the 
1980s, were collated to create the first pollen calendar 
for Ireland. This reveals the start and end of the season, 
and peak release periods, for each pollen type and 
highlights the most allergenic species present in the 
Irish environment.  

The novel approaches showed decent correlation when 
compared with the impaction methodologies and had 
the added benefit of outputting their data at a higher 
time resolution and in a more timely manner. These 
data, in combination with other air quality data, could 
be useful for air quality modelling and risk assessment. 
However, as these approaches could not differentiate 
between pollen species, they are more useful as bulk 
pollen monitors than as species-specific detectors.

EPA Research Report 420

Pollen Monitoring and 
Modelling (POMMEL)

Authors: David O’Connor, Emma Markey, 
Jose Maria Maya-Manzano, Paul Dowding,  
Aoife Donnelly and John Sodeau

Phone: 01 268 0100 
Twitter: @EPAResearchNews 
Email: research@epa.ie 

EPA Research Webpages
www.epa.ie/our-services/research/


	EPA-ReportCover-OConnor1
	Inside_english
	RR 2017-CCRP-FS.35 (O’Connor) final web
	Acknowledgements
	Disclaimer
	Project Partners
	Contents 
	List of Figures
	List of Tables
	Executive Summary
	1	Introduction
	1.1	Background
	1.2	Pollen Monitoring Methods
	1.3	Pollen Modelling and Forecasting Methods
	1.4	POMMEL Objectives and Outputs

	2	Traditional Pollen Monitoring
	2.1	Overview of Prevalent Pollen Types and Trends
	2.2	Differences between Urban and Rural Sampling Locations

	3	WIBS Real-time Monitoring Campaign
	3.1	Campaign Overview
	3.2	Pollen Monitoring Data
	3.3	WIBS Monitoring Data
	3.4	Comparison of Hirst–Lanzoni Trap and WIBS Data
	3.5	Suitability for Monitoring Other PBAPs

	4	Japanese Pollen Counter Monitoring Campaign
	4.1	Campaign Overview
	4.2	Determination of Extraction Window – Literature
	4.3	Comparison of KH-3000-01 and Hirst Sampler Data

	5	Pollen Forecasting and Modelling
	5.1	Pollen Calendar – Dublin
	5.2	Observation-based Models – Dublin
	5.3	Public Forecasts

	6	Recommendations
	6.1	Option A: Small-scale Network
	6.2	Option B: Medium-scale Network
	6.3	Option C: Large-scale Network
	6.4	Pollen Modelling and Forecasting 
	6.5	Dissemination of Pollen Forecast Information

	7	Conclusions
	References
	Abbreviations

	Inside_irish
	EPA-ReportCoverOConnor2

